首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultraviolet spectroscopy of m- and p-divinylbenzene isomers (mDVB and pDVB) was studied by a combination of methods, including resonance-enhanced two-photon ionization (R2PI), laser-induced fluorescence (LIF), UV-UV hole-burning spectroscopy (UVHB), and single vibronic level fluorescence spectroscopy (SVLF). In mDVB, there are three low-energy conformations, cis-cis, cis-trans, and trans-trans whose S1 <-- S0 origins occur at 31,408, 31,856, and 32,164 cm(-1), respectively, as confirmed by UVHB spectroscopy. There are two possible conformations in pDVB, cis and trans. UVHB studies confirm the S1 <-- S0 origin of trans-pDVB occurs at 32,553 cm(-1), and the corresponding cis-pDVB origin is tentatively assigned to a transition at 32 621 cm(-1). SVLF studies were used to determine several of the vinyl torsional levels of the isomers of mDVB and pDVB. A two-dimensional flexible model was used to fit these levels in mDVB to a potential form and determine the barriers to isomerization.  相似文献   

2.
Zero kinetic energy (ZEKE) photoelectron spectroscopy of the hydroquinone-water (HQW) complex was carried out to characterize its S(1)-S(0) resonantly enhanced multiphoton ionization (REMPI) spectrum in terms of the cis and trans conformers. The ZEKE spectra of the hydroquinone isomers show differences in the Franck-Condon (FC) activity of a few ring modes, viz., modes 15, 9b, and 6b, due to the different symmetries of the two isomers. These modes were used as a "diagnostic tool" to carry out the categorical assignment of the REMPI spectrum of the HQW complex. It was found that the FC activity of these diagnostic modes in the cationic ground state (D(0)) of the water complex is similar as that of the monomer. The two lowest energy transitions in the REMPI spectrum of the water complex, 33,175 and 33,209 cm(-1), were reassigned as the band origins of the cis and trans hydroquinone-water complexes, which is opposite of the previous assignment. The intermolecular stretching mode (sigma) of the complex shows a long progression, up to v(')=4, in the cationic ground state and is strongly coupled to other observed ring modes. The Franck-Condon factors for different members in the progression were calculated using the potential energy surfaces computed ab initio. These agree well with the observed intensity patterns in the progression. The ionization potential of the trans and cis complexes was determined to be 60,071+/-4 and 60,024+/-4 cm(-1), respectively.  相似文献   

3.
Transient electronic absorption following excitation of the first C-H stretching overtone (2nu(CH)) or a C-H stretch-bend combination (nu(CH) + nu(bend)) monitors the flow of vibrational energy in cis-stilbene and in trans-stilbene. Following a rapid initial rise as energy flows into states interrogated by the probe pulse, the absorption decays with two time constants, which are about a factor of 2 longer for the cis-isomer than for the trans-isomer. The decay times for cis-stilbene are tau2(cis) = (2.6 +/- 1.5) ps and tau3(cis) = (24.1 +/- 2.1) ps, and those for trans-stilbene are tau2(trans) = (1.4 +/- 0.6) ps and tau3(trans) = (10.2 +/- 1.1) ps. The decay times are essentially the same in different solvents, suggesting that the relaxation is primarily intramolecular. The two decay times are consistent with the sequential flow of energy through sets of coupled states within the molecule, and the difference in the rates for the two isomers likely reflects differences in coupling among the states arising from the different structures of the isomers. The similarity of the time evolution following excitation of the first C-H overtone at 5990 cm(-1) and the stretch-bend combination at 4650 cm(-1) is consistent with a subset of states, whose structure is similar for the two vibrational excitation energies, controlling the observed flow of energy.  相似文献   

4.
Resonant two-photon ionization (R2PI), UV hole-burning (UVHB), and resonant ion-dip infrared (RIDIR) spectroscopy have been used to study the single-conformation infrared and ultraviolet spectroscopy of 3-(4-hydroxyphenyl)-N-benzylpropionamide (HNBPA, HOC6H5CH2CH2(CO)NHCH2C6H5) cooled in a supersonic expansion. UVHB determines the presence of three conformers, two of which dominate the spectrum. RIDIR spectra in the OH stretch (3600-3700 cm(-1)), amide NH stretch (3450-3500 cm(-1)), and CO stretch (1700-1750 cm(-1)) regions reveal the presence of small shifts in these fundamentals that are characteristic of the folding of the flexible chain and the ring-ring and ring-chain interactions. On the basis of a comparison of the experimental frequency shifts with calculations, the two major experimentally observed conformers are assigned to two folded structures in which the two aromatic rings are (nominally) face-to-face and perpendicular to one another. The perpendicular structure has a transition assignable to the S0-S2 origin, while the face-to-face structure does not, consistent with a faster nonradiative process in the latter case. The calculated structures and vibrational frequencies are quite sensitive to the level of theory due to the flexibility of the interconnecting chain and the importance of dispersive interactions between the two aromatic rings.  相似文献   

5.
The conformational structures of jet-cooled acetaminophen were investigated in the gas phase by resonant 2-photon ionization and UV-UV hole-burning spectroscopy. In contrast to the results from a previous study, two nearly isoenergetic conformers were distinctly found in a supersonic molecular beam expansion and positively identified as the cis and trans isomers of acetaminophen by UV-UV hole-burning spectroscopy. The 0-0 bands of the cis and trans isomers were found at 33518.7 and 33485.6 cm(-1), respectively. The vibronic bands of the two isomers are close-lying and/or partially overlapping due to the small energy difference (33 cm(-1)) between the two 0-0 bands. As a consequence, the recorded resonant 2-photon ionization spectrum is highly congested in the low excitation energy region, which develops continuously into a featureless, broadened spectrum in the high energy region.  相似文献   

6.
The ?-X electronic absorption spectrum of propargyl peroxy radical has been recorded at room temperature by cavity ring-down spectroscopy. Electronic structure calculations predict two isomeric forms, acetylenic and allenic, with two stable conformers for each. The acetylenic trans conformer, with a band origin at 7631.8 ± 0.1 cm(-1), is definitively assigned on the basis of ab initio calculations and rotational simulations, and possible assignments for the acetylenic gauche and allenic trans forms are given. A fourth form, allenic cis, is not observed. Simulations based on calculated torsional potentials predict that the allenic trans form will have a long, poorly resolved progression in the OOCC torsional vibration, consistent with experimental observations.  相似文献   

7.
The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.  相似文献   

8.
By using a high-resolution infrared (IR) laser to prepare propyne (C(3)H(4)) in selected rotational levels of the excited nu(1) (acetylenic C-H stretching) vibration mode prior to vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have obtained rotationally resolved VUV-PFI-PE spectra for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) band. The analysis of these PFI-PE spectra leads to the determination of the spin-orbit constant of A=-13.0+/-0.2 cm(-1) for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) state. Using this A constant and the relative rotationally selected and resolved state-to-state photoionization cross sections thus measured, we have obtained an excellent simulation for the VUV-PFI-PE origin band of C(3)H(4) (+)(X (2)E(32,12)), yielding a value of 83 619.0+/-1.0 cm(-1) (10.367 44+/-0.000 12 eV) for the adiabatic ionization energy of C(3)H(4) [IE(C(3)H(4))]. The present two-color IR-VUV-PFI-PE study has also made possible the determination of the C-H stretching frequencies nu(1) (+)=3217.1+/-0.2 cm(-1) for C(3)H(4) (+)(X (2)E(32,12)). The spectral assignment and simulation were guided by high-level ab initio calculations on the IE(C(3)H(4)), Franck-Condon factors for photoionization transitions, and rotational constants and vibrational frequencies for C(3)H(4) (+).  相似文献   

9.
Near-pure samples of (E)-phenylvinylacetylene ((E)-PVA) and (Z)-phenylvinylacetylene ((Z)-PVA) were synthesized, and their ultraviolet spectroscopy was studied under jet-cooled conditions. The fluorescence excitation and UV-UV holeburning (UVHB) spectra of both isomers were recorded. The S0-S1 origin of (E)-PVA occurs at 33,578 cm(-1), whereas that for (Z)-PVA occurs at 33,838 cm(-1), 260 cm(-1) above that for (E)-PVA. The present study focuses primary attention on the vibronic spectroscopy of (E)-PVA. Single vibronic level fluorescence spectra of many prominent bands in the first 1200 cm(-1) of the S0-S1 excitation spectrum of (E)-PVA were recorded, including several hot bands involving low-frequency out-of-plane vibrations. Much of the ground-state vibronic structure observed in these spectra was assigned by comparison with styrene and trans-beta-methylstyrene, assisted by calculations at the DFT B3LYP/6-311++G(d,p) level of theory. Both S0 and S1 states of (E)-PVA are shown to be planar, with intensity appearing only in even overtones of out-of-plane vibrations. Due to its longer conjugated side chain compared with that of its parent styrene, (E)-PVA supports extensive Duschinsky mixing among the four lowest-frequency out-of-plane modes (nu45-nu48), increasing the complexity of this mixing relative to that of styrene. Identification of the v' = 0-3 levels of nu48, the lowest frequency torsion, provided a means of determining the 1D torsional potential for hindered rotation about the C(ph)-C(vinyl) bond. Vibronic transitions due to (Z)-PVA were first identified as small vibronic bands that did not appear in the UVHB spectrum recorded with the hole-burn laser fixed on the S0-S1 origin of (E)-PVA. The LIF and UVHB spectra of a synthesized sample of (Z)-PVA confirmed this assignment.  相似文献   

10.
The title compounds trans- and cis-2,2,2',2'-tetrachloro-3,3,3',3'-tetramethyl-bicyclopopylidene were synthesized, and their infrared and Raman spectra were recorded. Non-coincidence between the IR and Raman bands of the trans compound suggested C(2h) symmetry and a planar ring system. In the cis compound most of the IR and Raman bands coincided and a C(2v) symmetry seems likely. The exocyclic CC double bond gave rise to a medium/weak Raman band at 1,847 cm(-1) in the trans compound. In the cis derivative IR and Raman bands both at 1,825 cm(-1) were observed. From similarities with related molecules, the ring breathing, the antisymmetric ring stretch, the CCl(2) out-of-phase and in-phase stretch and the out-of-plane ring bending modes have been tentatively assigned for the trans and cis compounds.  相似文献   

11.
Ab initio calculations at the MP4(SDTQ)/6-311G//MP2/6-31G level were performed to study the structures and stabilities of the dimer of ethyl cation, (C(2)H(+)(5))(2), and related C(4)H(10)(2+) isomers. Two doubly hydrogen bridged diborane type trans 1 and cis 2 isomers were located as minima. The trans isomer was found to be more favorable than cis isomer by only 0.6 kcal/mol. Several other minima for C(4)H(10)(2+) were also located. However, the global energy minimum corresponds to C-H (C(4) position) protonated 2-butyl cation 10. Structure 10 was computed to be substantially more stable than 1 by 31.7 kcal/mol. The structure 10 was found to be lower in energy than 2-butyl cation 13 by 34.4 kcal/mol.  相似文献   

12.
Chemical investigation of the marine red alga (Rhodophyta) Ceratodictyon spongiosum containing the symbiotic sponge Sigmadocia symbiotica collected from Biaro Island, Indonesia, yielded two isomers of a new and bioactive thiazole-containing cyclic heptapeptide, cis,cis-ceratospongamide (1) and trans, trans-ceratospongamide (2). Isolation of these peptides was assisted by bioassay-guided fractionation using a brine shrimp toxicity assay (Artemia salina). The structures of the ceratospongamides, which each consist of two L-phenylalanine residues, one (L-isoleucine)-L-methyloxazoline residue, one L-proline residue, and one (L-proline)thiazole residue, were established through extensive NMR spectroscopy, including (1)H-(13)C HMQC-TOCSY, and (1)H-(15)N HMBC experiments, as well as chemical degradation and chiral analysis. cis,cis- and trans,trans-ceratospongamide are stable conformational isomers of the two proline amide bonds. Molecular modeling of these two ceratospongamide isomers showed the trans, trans isomer to be quite planar, whereas the cis,cis isomer has a more puckered overall conformation. trans,trans-Ceratospongamide exhibits potent inhibition of sPLA(2) expression in a cell-based model for antiinflammation (ED(50) 32 nM), whereas the cis,cis isomer is inactive. trans,trans-Ceratospongamide was also shown to inhibit the expression of a human-sPLA(2) promoter-based reporter by 90%.  相似文献   

13.
Rate constants for acid-catalyzed dehydration of cis-2-substituted 1,2-dihydro-naphthols are well correlated by the Taft relationship log k = -0.49 - 8.8σ(I), with minor negative deviations for OH and OMe. By contrast the trans substituents show a poor correlation with σ(I) and in most cases react more slowly than their cis isomers. The behavior is consistent with rate-determining formation of a 2-substituted carbocation (naphthalenium ion) intermediate that for cis reactants possesses a 2-C-H bond suitably oriented for hyperconjugation with the charge center. For the trans isomers the 2-substituent itself is oriented for hyperconjugation in the initially formed conformation of the cation. It is argued that k(cis)/k(trans) rate ratios for substituents (Me, 8.4; Bu(t), 12.7; Ph, 3.8; NH(3)(+), 160; OH, 440) reflect their hyperconjugating ability relative to hydrogen. Faster reactions of trans isomers are observed for substitutents known (RS, N(3)) or suspected (EtSO, EtSO(2)) of stabilizing the cation by a π or σ neighboring group effect. The good Taft correlation is taken to indicate that cis substuents are reacting normally, differentiated only by their inductive effects. The slower reactions of the trans isomers are the judged to be "abnormal". This is confirmed by comparing effects of cis and trans β-OH substituents on the reactivities of dihydro phenols, naphthols, and phenanthrols. Whereas k(H)/k(OH) for cis substituents varies by less than 8-fold and is consistent with the influence of an inductive effect of the OH group (k(H)/k(OH) ≈ 2000), k(H)/k(OH) for the trans substituents varies by 3 orders of magnitude, reflecting the additional influence of the lesser hyperconjugating ability of a C-OH bond compared to a C-H bond. The magnitude and variation of this difference is consistent with C-H hyperconjugation conferring aromatic character on the arenium ions.  相似文献   

14.
Metalation of N-methyl-1,3-thiazoline-2-thione followed by reaction with elemental S or Se affords a simple and efficient approach to N-methyl-1,3-thiazoline-2-thione-4,5-dithiolate (Me-thiazdt) and the diselenolate (Me-thiazds) analogue. In the presence of metal II centers such as Zn, Ni, and Pd these ligands afford the corresponding dianionic dithiolene and diselenolene complexes. The Ni and Pd dianionic complexes are easily oxidized into the monoanionic species. Complexes were isolated and characterized by single-crystal X-ray crystallography. Most often a substitutional S/N-Me disorder is observed, attributable to the square-planar trans complexes disordered on two positions or coexistence of both cis and trans isomers on inversion centers. Monoanionic complexes exhibit a strong NIR absorption band with epsilon values up to 33 750 M(-1) cm(-1).  相似文献   

15.
FT-Infrared (4000-400 cm(-1)) and NIR-FT-Raman (4000-50 cm(-1)) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON-trans and ON-cis: the ON-trans rotamer being more stable than cis by 3.42 kcal mol(-1) for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol(-1) for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON-trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm(-1); the characteristic ring mode at 1051 cm(-1) is diminished; a mixed mode near 707 cm(-1) is enhanced. Further, an observed doublet near 1696-1666 cm(-1) in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm(-1) and a combination mode of ring stretch near 1059 cm(-1) and deformation vibration, 625 cm(-1). A strong Raman aldehydic torsional mode at 62 cm(-1) is interpreted to correspond to the dominant ON-trans over cis rotamers population.  相似文献   

16.
The lifetimes of methyl 4-hydroxycinnamate (OMpCA) and its mono-hydrated complex (OMpCA-H(2)O) in the S(1) state have been measured by picosecond pump-probe spectroscopy in a supersonic beam. For OMpCA, the lifetime of the S(1)-S(0) origin is 8-9 ps. On the other hand, the lifetime of the OMpCA-H(2)O complex at the origin is 930 ps, which is ~100 times longer than that of OMpCA. Furthermore, in the complex the S(1) lifetime shows rapid decrease at an energy of ~200 cm(-1) above the origin and finally becomes as short as 9 ps at ~500 cm(-1). Theoretical calculations with a symmetry-adapted cluster-configuration interaction (SAC-CI) method suggest that the observed lifetime behavior of the two species is described by nonradiative decay dynamics involving trans → cis isomerization. That is both OMpCA and OMpCA-H(2)O in the S(1) state decay due to the trans → cis isomerization, and the large difference of the lifetimes between them is due to the difference of the isomerization potential energy curve. In OMpCA, the trans → cis isomerization occurs smoothly without a barrier on the S(1) surface, while in the OMpCA-H(2)O complex, there exists a barrier along the isomerization coordinate. The calculated barrier height of OMpCA-H(2)O is in good agreement with that observed experimentally.  相似文献   

17.
用密度泛函理论(DFT)的B3LYP方法和6-311+G(3df)基组,计算了气态下硝酰氯和顺/反应硝酸氯的几何构型、电子结构、红外光谱以及热力学性质,并讨论了它们的互变异构反应,分析了过渡态的结构。结果表明,B3LYP/6-311+G(3df)计算得到的结果与实验值及CCSD(T)方法计算结果吻合,且更适应于研究反应机理,ClNO2转变为cis-ClONO的过渡态(TS1)偏离平面构型;cis-ClONO和trans-ClONO互变反应的过渡态(TS2)属于内旋转位垒;高水平计算表明不存在由ClNO2直接转变为trans-ClONO的过渡态,而是得到了一个十分接近异裂产物的二级马鞍点(2SP)。根据得到的热力学函数计算了气态时各温度下互变异构反应的平衡常数。  相似文献   

18.
Organic molecules possessing intramolecular charge-transfer properties (D-pi-A type molecules) are of key interest particularly in the development of new optoelectronic materials as well as photoinduced magnetism. One such class of D-pi-A molecules that is of particular interest contains photoswitchable intramolecular charge-transfer states via a photoisomerizable pi-system linking the donor and acceptor groups. Here we report the photophysical and electronic properties of the trans to cis isomerization of 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene ligand (mepepy) in aqueous solution using photoacoustic calorimetry (PAC) and theoretical methods. Density functional theory (DFT) calculations demonstrate a global energy difference between cis and trans isomers of mepepy to be 8 kcal mol(-1), while a slightly lower energy is observed between the local minima for the trans and cis isomers (7 kcal mol(-1)). Interestingly, the trans isomer appears to exhibit two ground-state minima separated by an energy barrier of approximately 9 kcal mol(-1). Results from the PAC studies indicate that the trans to cis isomerization results in a negligible volume change (0.9 +/- 0.4 mL mol(-1)) and an enthalpy change of 18 +/- 3 kcal mol(-1). The fact that the acoustic waves associated with the trans to cis transition of mepepy overlap in frequency with those of a calorimetric reference implies that the conformational transition occurs faster than the approximately 50 ns response time of the acoustic detector. Comparison of the experimental results with theoretical studies provide evidence for a mechanism in which the trans to cis isomerization of mepepy results in the loss of a hydrogen bond between a water molecule and the pyridine ring of mepepy.  相似文献   

19.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

20.
We present the basic principles of dynamic rotational spectroscopy for the highly vibrationally excited symmetric top molecule trifluoropropyne (TFP,CF3CCH). Single molecular eigenstate rotational spectra of TFP were recorded in the region of the first overtone of the nu(1) acetylenic stretching mode at 6550 cm(-1) by infrared-pulsed microwave-Fourier transform microwave triple resonance spectroscopy. The average rotational constant (B) of the highly vibrationally mixed quantum states at 6550 cm(-1) is 2909.33 MHz, a value that is 40 MHz larger than the rotational constant expected for the unperturbed C-H stretch overtone (2869.39 MHz). The average rotational constant and rotational line shape of the molecular eigenstate rotational spectra are compared to the distribution of rotational constants expected for the ensemble of normal-mode vibrational states at 6550 cm(-1) that can interact by intramolecular vibrational energy redistribution (IVR). The normal-mode population distribution at 6550 cm(-1) can be described using a Boltzmann distribution with a microcanonical temperature of 1200 K. At this energy the rotational constant distribution in the normal-mode basis set is peaked at about 2910 MHz with a width of about 230 MHz. The distribution is slightly asymmetric with a tail to the high end. The experimentally measured dynamic rotational spectra are centered at the normal-mode distribution peak; however, the spectral width is significantly narrower (40 MHz) than normal-mode ensemble width (230 MHz). This reduction of the width, along with the Lorentzian shape of the eigenstate rotational spectra when compared to the Gaussian shape of the calculated ensemble distribution, illustrates the narrowing of the spectrum due to IVR exchange. The IVR exchange rate was determined to be 120 ps, about ten times faster than the rate at which energy is redistributed from the v=2 level of the acetylenic stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号