首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel amphiphilic BAB-type block copolymers, ADN-PEG3400-ADN and Py-PEG3400-Py containing deep blue and bluish-green fluorescent moieties were prepared using atom transfer radical polymerization (ATRP) (where, ADN = poly(9,10-di(1-naphthalenyl)-2-vinylanthracene), Py = poly(1-vinyl pyrene) and PEG3400 = poly(ethylene glycol) with Mn = 3400 g/mol). The GPC number averaged molecular weights (MW) of the block copolymers were Mn = 9600 and 13,800 g/mol, respectively, based on polystyrene MW standards. The PEG3400 segment has a melting temperature (Tm peak) at 64–65 °C, whereas the glass transition temperatures (Tg midpoint) of the ADN and Py segments were found to be 230 °C and 193 °C, respectively, and are similar to their respective homopolymers indicating complete microphase segregration. The photoluminescence (PL) emission of the copolymers ADN-PEG3400-ADN exhibited two maxima at 423.5 nm and 441.5 nm while Py-PEG3400-Py has a maximum at 488.5 nm. Both copolymers form individual spherical micelles with diameter from 30 to 90 nm for Py-PEG3400-Py and 40–160 nm for ADN-PEG3400-ADN. The micelles, however, transform into cross-linked pearl-necklace-like aggregates at polymer concentrations above 1000 ppm, which may be attributed to the physical cross-linking between adjacent spherical micelles caused by the PEG3400 segments.  相似文献   

2.
To prepare intermediary layer crosslinked micelles, a photocrosslinkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PCEMA-PMMA), was synthesized and its micellar characteristics were investigated. The triblock copolymer of PEG-b-poly(2-hydroxyethyl methacrylate)-b-PMMA (PEG-PHEMA-PMMA) (M= 9800 g/mol, Mw/Mn = 1.33) was first polymerized by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) using a PEG macroinitiator in a mixed solvent of anisole/2-isopropanol (3/1 v/v). The middle block of the copolymer was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 113, 18 and 21, respectively. The critical micelle concentration (CMC) of the PEG-PCEMA-PMMA was 0.011 mg/mL. The PEG-PCEMA-PMMA micelles were spherically shaped with an average diameter of 43 nm. The intermediary layer of the PEG-PCEMA-PMMA micelles was crosslinked by UV irradiation. Not all of the cinnamate groups underwent photocrosslinking probably due to a lack of other cinnamate groups in their immediate vicinity. However, the degree of photocrosslinking of the intermediary layer of the PEG-PCEMA-PMMA micelles was sufficient to give excellent colloidal stability, even in different external environments.  相似文献   

3.
《Analytica chimica acta》2004,514(2):259-264
A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml−1 and a limit of detection of 0.18 ng ml−1. The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations.  相似文献   

4.
New fluorescent amphiphilic copolymers polyacrylamide-b-poly(p-methacrylamido)acetophenone thiosemicarbazone (PAM-b-PMATC) were synthesized by atom transfer radical polymerization (ATRP) method. The structures of polymers were confirmed by 1H NMR and gel permeation chromatography-multi-angle laser light scatting (GPC-MALLS). PAM-b-PMATC showed a broad emission peak about 388 nm excited at 318 nm in aqueous solution. The self-assembly behavior of PAM-b-PMATC in the binary mixture formamide/water was observed by transmission electron microscope (TEM). It indicated that PAM-b-PMATC-I and -II with the same PAM block self-assembled to vesicles and sunflower-like micelles. The water fraction in the mixture could control the size and thickness of vesicles. Vesicle size increased from 50 to 420 nm and vesicle thickness changed from 5 to 50 nm with water content ranging from 33 to 90 vol.%. In addition, the cytotoxicity in vitro of PAM-b-PMATC-I and its nanoparticles loaded with methotrexate (MTX) were evaluated by MTT assay.  相似文献   

5.
The hydrophobic monomer dodecafluoroheptyl methacrylate has been copolymerized with hydrophilic monomer methacrylic acid in aqueous solution without any additional emulsifier used via a two-step polymerization process of RAFT. The FTIR and GPC results indicated that amphiphilic copolymers with a narrow molecular weight distribution and well-defined blocks have been synthesized successfully. And the copolymers are likely to form steady micelles in the emulsion. Indicated by TEM, it is clear that micelles with a diameter of 70-120 nm have been formed. Despite a content of 22 wt% of hydrophilic carboxyl, films formed by casting the emulsion onto the baseplate can be hydrophobic after heating treatment.  相似文献   

6.
Macroporous poly(glycidyl methacrylate-ethylene dimethacrylate) [P(GMA-EDMA)] particles with pore size around 140-200 nm and poly(glycidyl methacrylate-divinylbenzene) [P(GMA-DVB)] particles with pore size of 450 nm were prepared by the surfactant reverse micelles swelling method. This method was similar with the conventional suspension polymerization, and the difference was that higher concentration of surfactant was added in the oil phase. When the oil phase containing surfactant was dispersed in aqueous phase, the surfactant reverse micelles in the oil droplets absorbed water from continuous phase. After polymerization, the large pores were formed by the absorbed water. The effects of the amount and type of surfactants, the cooperation of surfactant and diluents, and the crosslinking agent on the morphology of microspheres were investigated. This study provided a new and simple method to prepare microspheres with the pores of several hundred nanometers, which overcame the disadvantages found in the conventional preparation methods of macroporous microspheres.  相似文献   

7.
A series of AB and ABA block copolymers of pDEGMEMA-b-pCHMA and pCHMA-b-pDEGMEMA-b-pCHMA cyclohexyl methacrylate (CHMA) and di(ethylene glycol) methyl ether methacrylate (DEGMEMA) with Mn ranging between 18,000 and 50,000 g mol−1 and PDI = 1.09-1.32 were prepared via copper(I) mediated living radical polymerization with pyridylmethanimine ligands. Aggregation properties were investigated using a combination of 1H NMR, dynamic and static light scattering. For comparative purposes poly(CHMA) and poly(DEGMEMA) homopolymers were prepared. The CAC values estimated for the di- and triblock copolymers soluble in cyclohexane are lower than 0.005 g L−1 whereas the values found for block copolymers in methanol solutions are less than 0.070 g L−1. DLS analysis showed the presence of micellar aggregates with diameters ranging from 25 to 40 nm with particle polydispersity indexes between 0.003 and 0.183. The pCHMA-b-pDEGMEMA-b-pCHMA micelles solubilized the aqueous phase in petrol/gasoline. The block copolymer-based micelles incorporate water within their hydrophilic domains, potentially overcoming a number of practical problems such as the formation of biphasic mixtures in solvent blends due to undesired water accumulation.  相似文献   

8.
Reversibly photo-cross-linkable pH-responsive block copolymer poly(ethylene oxide)-b-poly((2-(diethylamino)ethyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy] coumarin)) (PEO-b-P(DEA-co-CMA)) was synthesized via atom transfer radical polymerization (ATRP). Block copolymer nanogels could be easily prepared by first photo-cross-linking of the micelles at pH > 7 and then adjusting the solution to pH < 7. The photo-cross-linking was proved to be reversibly controlled under alternative irradiation of UV light at 365 nm and 254 nm. As a result, the cross-linking degrees and sizes of the nanogels can be easily controlled by alternatively UV light irradiation. Finally, the nanogels can serve as nanoreactors for the synthesis of gold nanoparticles. The protonated DEA units were first coordinated with HAuCl4, and then the electrostatically bounded AuCl4− anions were reduced to gold nanoparticles by NaBH4. The nanogel-supported gold nanoparticles were used in chemical catalysis. The pH-responsive photo-cross-linked nanogels have been characterized using dynamic light scattering, transmission electron microscopy, UV-vis spectra and 1H NMR spectroscopy measurements, respectively.  相似文献   

9.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

10.
A range of polyvinylpyrrolidone–polycaprolactone diblock copolymers with varying chain lengths were synthesized by Atom Transfer Radical Polymerisation (ATRP) using bromo-polycaprolactone as macroinitiator and copper(I) bromide/bipyridine catalytic system. The copolymers self-assembled in solution into core–shell micelles with sizes varying from 150 to 205 nm and critical micelle concentration of the order of 10−5 to 10−6 M. Front line anti-Tuberculosis drugs Rifampicin (RIF), Pyrazinamide (PZA) and Isoniazid (INH) were successfully encapsulated within the micelle hydrophobic core singly or in dual combination. The effect of length of hydrophobic and hydrophilic segments on drug loading, micelle size and drug release was investigated. Determination of binding constants showed that RIF binds more strongly to the micelle core than PZA and INH, leading to highest drug loading content. All drugs were released in vitro (PBS solution at 37 °C) in a sustained manner with zero-order kinetics and followed the order INH > PZA > RIF.  相似文献   

11.
Andreas M. Nyström 《Tetrahedron》2008,64(36):8543-8552
Shell crosslinked knedel-like (SCK) nanoparticles were prepared having thiol-terminated poly(ethylene glycol) (PEG) chains extending throughout their shell layers and were then conjugated with bovine serum albumin (BSA) as a model biomacromolecule. The SCKs originated from amphiphilic block copolymers of acrylic acid and styrene, PAA66-b-PS71, pre-functionalized with ca. five mono-tert-Boc-protected diamino PEG32 per polymer chain, which then had undergone deprotection and amidation with N-succinimidyl-S-acetylthiohexanionate to introduce an acetyl-protected thiol chain terminus on the end of each PEG graft. Assembly of these amphiphilic graft block copolymers into micelles, by transitioning from N,N-dimethylformamide to water, was followed by amidation-based crosslinking throughout the shell layer, with the introduction of 2,2′-(ethylenedioxy)-bis(ethylamine) and 1-(3′-dimethylaminopropyl)-3-ethylcarbodiimide methiodide, to afford SCKs bearing the acetyl-protected thiol groups. Deprotection in aqueous buffer solution by reaction with hydroxylamine hydrochloride gave the SCKs presenting a nominal number of ca. 750 thiols per nanoparticle. The solution was assayed by Ellman's method resulting in a concentration of 55±6 μM [HS], theoretical of concentration 58 μM [HS], after which the coupling with BSA was performed immediately. Tetramethylrhodamine-labeled, maleimido-functionalized BSA was allowed to react with the thiol-functionalized SCKs at stoichiometries of ca. 10, 20, and 30 BSAs/SCK, after which UV-vis spectroscopy and Bradford's assay determined a coupling efficiency of >50-60%. The SCK particle diameters were measured by TEM to be 16 nm and 20 nm and their hydrodynamic diameters were measured by dynamic light scattering to be 20 nm and 30 nm, before and after BSA conjugation, respectively.  相似文献   

12.
A series of amphiphilic copolymers, dextran-graft-methoxypolyethylene glycol/poly(ε-caprolactone) (Dex-g-mPEG/PCL) were synthesized by grafting both PCL and mPEG chains to dextran, and subsequently the micellar self-assembly behavior of resultant copolymers was investigated. PCL was designed by using Fmoc-protected valine other than organometallic catalyst as the initiator to ring-opening polymerize ε-caprolactone (CL) in view of the safety demand as well as the extra application potential resulting from -NH2 group introduced after Fmoc deprotection. All the copolymers were characterized by 1H NMR, FT-IR and GPC measurements. The prepared copolymers are capable of self-assembling into nanosized spherical micelles in aqueous solution with the diameter of around 100-200 nm determined by TEM image and DLS measurement. The critical micellar concentration (CMC) of the graft copolymers is in the range of 10-100 mg/L determined by the fluorescence robe technique using pyrene. The result also indicated that the CMC of self-assembled micelles could be adjusted by controlling the degree of substitution of mPEG and PCL, and these micelles may find great potential as drug carriers in biomedical fields.  相似文献   

13.
A novel and sensitive cloud point extraction procedure for the determination of trace amounts of malachite green by spectrophotometry was developed. Malachite green was extracted at pH 2.5 mediated by micelles of nonionic surfactant Triton X-100. The extracted surfactant-rich phase was diluted with ethanol and its absorbance was measured at 630 nm. The effect of different variables such as pH, Triton X-100 concentration, cloud point temperature and time and diverse ions was investigated and optimum conditions were established. The calibration graph was linear in the range of 4-500 ng mL−1 of malachite green in the initial solution with r = 0.9996 (n = 10). Detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 and the relative standard deviation (R.S.D.) for 20 and 300 ng mL−1 of malachite green was 1.48 and 1.13% (n = 8), respectively. The method was applied to the determination of malachite green in different fish farming and river water samples.  相似文献   

14.
Amphiphilic block copolymers, methoxy poly(ethylene glycol)-b-poly(valerolactone) (mPEG-b-PVL), were synthesized via ring opening polymerization of δ-valerolactone in the presence of methoxy poly(ethylene glycol) (mPEG). The copolymers form micelle-like nanoparticles by their amphiphilic characteristics and their structures were examined by Nuclear Magnetic Resonance (NMR). The sizes of nanoparticles ranged from 60 to 120 nm as measured by dynamic light scattering detection, and were larger with higher molecular weight of the copolymers. The Critical Micelle Concentration (CMC) of these nanoparticles in water decreased with increasing molecular weight of hydrophobic segment. Stability analysis showed that the micellar solutions maintain their sizes at 37 °C for six weeks without aggregation or dissociation. The lyophilization method was better than the evaporation method when camptothecin (CPT) was incorporated to the micelles. The former method yielded higher CPT loading efficiency and lower aggregation. The loading efficiency of CPT could be more than 96% and a steady release rate of CPT was kept for twenty six days. Moreover, the mPEG-b-PVL polymeric micelles offered good protection of CPT lactone form at 37 °C for sixteen days. The copolymers showed no cytotoxicity towards L929 mouse muscular cells when incubated for one day. Taken together, the mPEG-b-PVL copolymer has potential to be used for the delivery of CPT or other similar drugs.  相似文献   

15.
A new five-coordinated bis(2,4-dimethyl-8-quinolinolato)(triphenylsilanolato)aluminum (III) (24MeSAlq) material, having bulky substituents, was prepared in one-step reaction and was characterized. The photoluminescent (PL) spectrum of 24MeSAlq shows the largest hypsochromic shift exhibiting the maximum wavelength at the peak of 461 nm among the blue-emitting q2AlOR-type complexes (q = 8-quinolinolato ligand and OR = aryloxy or alkoxy ligand) reported. The deep blue device composed of ITO/2-TNATA (60 nm)/NPB (15 nm)/24MeSAlq (20 nm)/Alq3 (45 nm)/LiF (1 nm)/Al (100 nm), which uses 24MeSAlq as a hole-blocking layer and applies a principle efficiently confining an exciton recombination zone into a hole transporting layer, shows the maximum electroluminescent (EL) at the peak of 446 nm originating from the NPB emissive layer. This is attributed to an excellent hole-blocking property due to the high HOMO (highest occupied molecular orbital) energy level (6.14 eV).  相似文献   

16.
The formation of spherical micelles in aqueous solutions of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO and poly(acrylic acid)-block-poly(vinyl alcohol), PAA-b-PVOH has been investigated with light scattering-titrations, dynamic and static light scattering, and 1H 2D Nuclear Overhauser Effect Spectroscopy. Complex coacervate core micelles, also called PIC micelles, block ionomer complexes, and interpolyelectrolyte complexes, are formed in thermodynamic equilibrium under charge neutral conditions (pH 8, 1 mM NaNO3, = 25 °C) through electrostatic interaction between the core-forming P2MVP and PAA blocks. 2D 1H NOESY NMR experiments show no cross-correlations between PEO and PVOH blocks, indicating their segregation in the micellar corona. Self-consistent field calculations support the conclusion that these C3Ms are likely to resemble a ‘patched micelle’; that is, micelles featuring a ‘spheres-on-sphere’ morphology.  相似文献   

17.
Shell cross-linked (SCL) micelles with amine-functional coronas have been constructed in aqueous solution by exploiting the micellar self-assembly of new thermo-responsive ABC triblock copolymers. These copolymers were prepared via atom transfer radical polymerisation (ATRP) in convenient one-pot syntheses and comprised a thermo-responsive core-forming poly(propylene oxide) [PPO] block, a cross-linkable central poly(glycerol monomethacrylate) [GMA] block and an amine-functional outer block based on either poly(2-(dimethylamino)ethyl methacrylate) [DMA] or poly([2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) [QDMA]. DMF GPC analysis indicated an Mn of 17,700 and an Mw/Mn of 1.46 for the PPO-PGMA-PDMA triblock copolymer. The DMA residues of the PPO-PGMA-PDMA triblock copolymer were reacted with methyl iodide to prepare copolymers with differing degrees of quaternisation. Each triblock copolymer dissolved molecularly in aqueous solution at 5 °C and formed micelles with amine-functional coronas above a critical micelle temperature (CMT) of around 12 °C, which corresponded closely to the cloud point of the PPO macro-initiator. Cross-linking of the GMA residues in the inner shell using divinyl sulfone produced SCL micelles that remained intact at 5 °C, i.e. below the cloud point of the core-forming PPO block. Aqueous electrophoresis studies confirmed that these SCL micelles had considerable cationic surface charge, as expected. The cationic SCL micelles were adsorbed onto a near-monodisperse anionic silica sol, which was used as a model colloidal substrate. Thermogravimetric analyses indicated SCL micelle mass loadings of 6.1-15.5 wt.%, depending on the initial micelle concentration. Aqueous electrophoresis studies confirmed that surface charge reversal occurred on adsorption of the SCL micelles and scanning electron microscopy studies revealed the presence of SCL micelles on the silica particles.  相似文献   

18.
Pore structure variation as a function of pH was investigated for the pore-filled pH-sensitive poly(acrylic acid)-poly(vinylidene fluoride) membranes. The pore radius reduced drastically as the poly(acrylic acid) gel incorporated inside the nascent substrate, which is from 113 nm of nascent substrate to as low as 7.0 nm of pore-filled membranes at pH acidic. For the membranes, the pore radii at pH neutral estimated by the extend Nernst–Planck equation (2.76–4.20 nm) and by the Spiegler–Kedem model with the steric-hindrance pore model (3.4–4.1 nm) are close to each other and comparable with that calculated from the poly(acrylic acid) gel correlation length (1.79–2.93 nm). The calculated pore density at pH neutral (49–258 × 1014 m−2) is much higher than that at pH acidic (2.8–39.8 × 1014 m−2). The results are interpreted in terms of the gel structure in the pore-filled membranes.  相似文献   

19.
Two accurate, reliable, and highly sensitive spectrofluorimetric methods were developed for simultaneous determination of binary mixture gemfibrozil and rosiglitazone in human plasma without prior separation steps. The first method is based on synchronous fluorescence spectrometry using double scans. At Δλ = 27 nm, gemfibrozil yields detectable signal that is independent of the presence of rosiglitazone. Similarly, at Δλ = 120 nm the signal of rosiglitazone is not influenced by the presence of gemfibrozil. Signals at two wavelengths, 301 (Δλ = 27 nm) and 368 nm (Δλ = 120 nm) vary linearly with gemfibrozil and rosiglitazone concentrations over the range 100-700 ng mL−1 (for gemfibrozil) and 20-140 ng mL−1 (for rosiglitazone), respectively. The limits of detection (LOD) were 2.3 and 2.72 ng mL−1 for gemfibrozil and rosiglitazone, respectively. The second method is based on the technique of simultaneous equations (Vierodt's method), in which 258 nm was selected as the excitation wavelength. Two equations are constructed based on the fact that at (λEm2=302 nm of gemfibrozil) and (λEm2=369 nm of rosiglitazone) the fluorescence of the mixture is the sum of the individual fluorescence of gemfibrozil and rosiglitazone. The limits of detection (LOD) were 28.1 and 23.63 ng mL−1 for gemfibrozil and rosiglitazone, respectively. The proposed methods were successfully applied for the determination of the two compounds in synthetic mixtures and in human plasma with a good recovery.  相似文献   

20.
A microchip capillary electrophoresis system with highly sensitive fluorescence detection is reported. The system was successfully constructed using an inverted fluorescence microscope, a highly sensitive photon counter, a photomultiplier tube (PMT) and a capillary electrophoresis microchip. This system can be applied to the fluorescence detection with various wavelengths (300-600 nm). Different fluorescence reagents require different excitation wavelengths. The wavelengths of UV light (300-385 nm), blue light (450-480 nm) and green light (530-550 nm) are employed to excite Titan yellow, fluorescence-5-isothiocyanate (FITC) and Rhodamine 6G, respectively. The detection limit (S/N = 3) of FITC is 7 × 10−10 M, which is 2-3 orders of magnitude lower than that obtained with the lamp-based fluorescence and PMT detection system and approaches the data gained by the laser-induced fluorescence detection. The linear relationship is excellent within the range of concentration 1.3 × 10−9 to 6.5 × 10−8 M FITC. It offers a new method to widen the application of the lamp-based fluorescence detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号