首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A catalyst based on TiO2 and nanodiamond with a 10 wt % palladium content of the catalyst was synthesized. The effect of the nanodiamond content on the catalytic properties in a reaction of CO oxidation at room temperature and low concentrations of CO (<100 mg/m3) was studied. It was established that, at a nanodiamond content of the catalyst from 7 to 9 wt % and a palladium content of 10 wt %, the rate of CO oxidation reached a maximum, and it was higher by a factor of 2.5 than the rate of CO oxidation on a catalyst based on pure TiO2, which included palladium clusters. With the use of transmission electron microscopy, XRD X-ray diffractometry, and X-ray photoelectron spectroscopy, it was found that the clusters of palladium covered with palladium oxide with an average cluster size of 4 nm were formed on the surface of the TiO2 carrier. It was assumed that the catalyst synthesized is promising for applications in catalytic and photocatalytic air-cleaning systems.  相似文献   

2.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
4-Phenylbut-3-enamide could be synthesized from corresponding 3-chloroprop-2-enylbenzene, carbon monoxide (1 atm), and titanium-nitrogen complexes, prepared from Ti(OiPr)4, Li, TMSCl, and molecular nitrogen (1 atm), using a palladium catalyst. The reaction proceeds via transmetalation of the titanium-nitrogen complex to an acylpalladium complex. PtBu3 as a ligand of the palladium catalyst, afforded a good result, and the amounts of Li and TMSCl affected the yield of amide. When the reaction was carried out using a bidentate ligand on the palladium complex under an atmosphere of argon instead of carbon monoxide, an allylamine derivative was obtained.  相似文献   

4.
The combination of palladium complex (tBu3P)Pd(Me)Cl ( 1 ) and NaB[3,5‐(CF3)2C6H3]4 (NaBAr4) catalyzed homopolymerization of a novel monomer, norbornene (NB) with a pendent 2‐fluorosulfonyltetrafluoroethoxymethyl chain (NBSF). Catalytic activities of 1 /NaBAr4 were higher than those of previously reported palladium or nickel catalysts, probably, because the palladium center with electron donative tBu3P ligand was barely poisoned by the sulfonyl fluoride coordination. Thus, 1 /NaBAr4 is the current best catalyst system for NBSF polymerization. The catalyst system also gave copolymers of NB with NBSF. The obtained copolymers have high sulfonyl‐fluoride incorporation and a narrow molecular weight distribution. Present catalyst system could control incorporation ratio of NBSF by changing a feed monomer ratio with slow addition of NB solution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5133–5141, 2008  相似文献   

5.
We report the synthesis of magnetically separable Fe3O4@Silica‐Threonine‐Pd0 magnetic nanoparticles with a core–shell structure. After synthesis of Fe3O4@Silica, threonine as an efficient stabilizer/ligand was bonded to the surface of Fe3O4@Silica. Then, palladium nanoparticles were generated on the threonine‐modified catalyst. The threonine stabilizer helps to generate palladium nanoparticles of small size (less than 4 nm) with high dispersity and uniformity. Magnetically separable Fe3O4@Silica‐Threonine‐Pd0 nanocatalyst was fully characterized using various techniques. This nanocatalyst efficiently catalysed the Heck cross‐coupling reaction of a variety of substrates in water medium as a green, safe and inexpensive solvent at 80°C. The Fe3O4@Silica‐Threonine‐Pd0 catalyst was used for at least eight successful consecutive runs with palladium leaching of only 0.05%.  相似文献   

6.
The behavior of potassium tetrachloropalladate(II) in media simulating biological fluids has been studied. In aqueous solutions of NaCl, the aquation rate is higher than the rate of chloro ligand introduction into the internal coordination sphere of palladium. In HCl solutions, on the contrary, the process of palladium chloro complex formation predominates. The latter is apparently due to protonation of water molecules composing aqua complexes. By means of the ZINDO/1 method, the substitution of ligands – water molecules and hydronium ion – in planar complexes of palladium(II) by chloride ion has been investigated. All complexes containing H2O and H3O+ ligands, other than [Pd(H2O)4]2+, have intramolecular hydrogen bonds. In [Pd(H2O)3(H3O)]3+ and trans-[Pd(H2O)2(H3O)Cl]2+, a “non-classic” symmetric hydrogen bond O ··· H ··· O is established (ZINDO/1, RHF/STO-6G*). By the first three steps the substitution of hydronium ion in the internal sphere of palladium atom is more favorable thermodynamically, compared to water molecules. Logarithms of stepwise stability constants of palladium(II) chloride complexes correlate linearly to enthalpies (ZINDO/1, PM3) of water substitution by chloride ion.  相似文献   

7.
Palladium colloids revealing narrow particle size distributions can be obtained by chemical reduction using tetra–alkylammonium hydrotriorganoborates. Combining the stabilizing agent [NR] with the reducing agent [BEt3H?] provides a high concentration of the protecting group at the reduction centre. Alternatively, NR4X (X = halogen) may be coupled to the metal salt prior to the reduction step: addition of N(octyl)4Br to Pd(ac)2 in THF, for example, evokes an active interaction between the stabilizing agent and the metal salt. Reduction of NR-stabilized palladium salts with simple reducing agents such as hydrogen at room temperature yields stable palladium organosols which may be isolated in the form of redispersible powders. The anion of the palladium salt is crucial for the success of the colloid synthesis. Electron microscopy shows that the mean particle size ranges between 1.8 and 4.0 nm. An X–ray–photoelectron spectrscopic examination demonstrated the presence of zerovalent palladium. These palladium colloids may serve as both homogeneous and heterogeneous hydrogenation catalysts. Adsorption of the colloids onto industrially important supports can be achieved without agglomeration of palladium particles. The standard activity of a charcoal catalyst containing 5% of colloidal palladium determined through the cinnamic acid standard test was found to exceed considerably the activity of the conventional technical catalysts. In addition, the lifespan of the catalyst containing a palladium colloid, isolated from the reduction of [N(octyl)4]2PdCl2Br2 with hydrogen, is superior to conventionally prepared palladium/charcoal (Pd/C) catalysts. For example, the activity of a conventional Pd/C catalyst is completely suppressed after 38×103 catalytic cycles per Pd atom, whereas the colloidal Pd/C catalyst shows activity even after 96times;103 catalytic cycles.  相似文献   

8.
The state of the active constituents of the freshly prepared PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of the carbon monoxide by molecular oxygen was studied by X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance IR Fourier transform spectroscopy (DRIFTS). It was shown that copper in the form of a crystalline phase of Cu2Cl(OH)3 with the structure of the mineral paratacamite and palladium chloride in an amorphous state occurred on the surface of γ-Al2O3. According to XAS data, the local environment of palladium consisted of four chlorine atoms, which formed a flat square with an increased distance between palladium and one of the chlorine atoms. The evolution of the local environments of copper and palladium upon a transition from the initial salts to the impregnating solutions and chlorides on the surface of γ-Al2O3 was considered. The role of γ-Al2O3 in the formation of the Cu2Cl(OH)3 phase was discussed. It was found by the DRIFTS method that linear (2114 cm−1) and bridging (1990 and 1928 cm−1) forms of coordinated carbon monoxide were formed upon the adsorption of CO on the catalyst surface. The formation of CO2 upon the interaction of coordinated CO with atmospheric oxygen was detected. Active sites including copper and palladium were absent from the surface of the freshly prepared catalyst.  相似文献   

9.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

10.
A catalyst based on plasma-chemical β-SiC and TiO2 with a palladium content of 10 wt % has been synthesized. The dependence of the rate of the CO oxidation reaction at room temperature and low CO concentrations (less than 100 mg/m3) on the β-SiC content has been studied. It has been found that with a β-SiC content of 8 to 10 wt %, the catalyst has a maximum reaction rate, which is three times that on a catalyst based on pure TiO2 including palladium clusters. The catalysts are promising for use in catalytic and photocatalytic air purification systems.  相似文献   

11.
The chemical reactivity of the aluminium-sec-butoxide (ASB) and the palladium acetylacetonate Pd(acac)2, used as precursors for the preparation of the alumina supported palladium catalysts by sol-gel method was investigated by the spectroscopic study of the precursor mixture during ageing, using FTIR, UV-VIS and 27Al NMR. The obtaind results showed that acetylacetonate ligands were linked to aluminum when the mixture was aged at 40°C. This was proved by the bands observed at 1530 and 1600 cm–1 in the FTIR spectra, the band obtained at 289 nm in the UV-VIS spectra and the 27Al NMR sharp peak at 3 ppm. Furthermore, in order to avoid the Pd(acac)2 reduction to metallic palladium by the SB occurring when the mixture is aged for 3 h, an optimum ageing time should be selected. The precursors modification and the preservation of the palladium oxidation state during ageing could be the required conditions to create a bond between palladium and aluminium during the gelation step. This should be the reason of the thermal stability improvement of the alumina supported palladium catalyst prepared by the sol-gel method.  相似文献   

12.
The reaction of binucleating thioamide ligands (L1-L3) with [PdCl2(PPh3)2] in 1:2 molar ratio in methanol medium afforded a series of binuclear palladium(II) complexes. The synthesized complexes were characterized by elemental analysis and 1H NMR. The molecular structure of one of the complexes was established by X-ray diffraction method. The binuclear palladium(II) thioamide complex has been shown to be an active catalyst for the Heck reaction of aryl bromides with alkenes.  相似文献   

13.
Palladium-catalyzed carbonylation of methanol in presence of iodide promoters was investigated. Iodide bridged palladium dimeric complex, [PPh3CH3]2[Pd2I6] was isolated from the carbonylation reaction mixture and characterized using X-ray crystallography. Reaction mechanism was proposed based on IR and UV spectroscopic characterizations of catalytic species involved in the catalytic cycle. The isolated dimeric palladium species, [Pd2I6]2− underwent carbonylation to give monomeric species [PdI3CO] at atmospheric pressure of carbon monoxide. It was also observed that PPh3 plays an important role to avoid catalyst deactivation at higher temperatures. Turnover frequency (TOF) of 1052 h−1 was achieved using Pd(OAc)2-HI-PPh3 catalyst system at 175 °C.  相似文献   

14.
An intermolecular C(sp3) H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3) H bond by the generated Pd NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3) H amination reaction to occur.  相似文献   

15.
CeO2 promoted palladium catalysts supported on Al2O3 were prepared using the impregnation (IM) and the deposition-precipitation (DP) methods. The activities and sulfur tolerance of the catalysts for hydrodesulfurization (HDS) were detected with thiophene HDS as probe reaction. H2 adsorption, XRD, FTIR, NH3-TPD, XPS were used to characterize the catalysts. The Pd-CeO2/Al2O3 (IM) catalyst was highly active for the HDS reaction, and it had much stronger sulfur tolerance than the Pd/Al2O3 catalyst. Pd-CeO2/Al2O3 (DP) showed excellent sulfur tolerance while its initial activity decreased. It was observed that with the chlorine bridge, the interfacial structure of Pd-Cl−1-Ce3+ was responsible for the high activity of the Pd-CeO2/Al2O3 (IM) catalyst, at the same time the interaction of Pd with Ce was weakened by Cl−1 ions. The enhanced sulfur tolerance over the Pd-CeO2/Al2O3 (IM) catalyst was attributed to the weakened Pd-S bond caused by the competitive adsorption of H2S on Ce3+ ions. As to the Pd-CeO2/Al2O3 (DP) catalyst, a strong interaction of Pd with Ce put Pd at an electron-deficient state, the creation of sulfided palladium was therefore inhibited.  相似文献   

16.
A new type of phosphino-phosphonium ylide ligand bearing a chiral sulfinyl center affords a P,C-chelated palladium(II) complex with a resolved asymmetric ylidic carbon atom. According to 31P NMR analysis of the crude material, the diastereoselectivity of the complexation at room temperature is ca. 7:1. In the crystal state, an X-ray diffraction analysis of one epimer reveals a quasi C2-symmetric chloro-bridged dinuclear structure, where the (S) configuration of the sulfur atom induces a (S) configuration of the ylidic carbon atom. A in situ Pd(0) catalyst generated from the phosphino-ylide and Pd(PPh3)4 promotes allylic substitution of 3-acetoxy-1,3-diphenylpropene by sodium malonate in 70% yield and 5% e.e.  相似文献   

17.
Carbon-carbon(sp2-sp2 and sp1-sp2) and carbon-nitrogen (nucleophilic allylation) coupling processes are promoted by a catalytic system containing [PdCl(η3-C3H5)]2 with the new ferrocenyl bis(difurylphosphine) 1,1′-bis[di(5-methyl-2-furyl)phosphino]ferrocene, Fc[P(FuMe)2]2. Starting from aryl bromides or allylic acetates this versatile catalyst system may be used at low palladium loadings (10−1-10−4 mol%) in some Heck, Suzuki, Sonogashira and allylic amination reactions to give cross-coupled products in excellent yield. Remarkably high activity is obtained in allylic substitution reactions, providing a significant impetus for the development of bulky phosphines possessing weak σ-donicity for this particular reaction.  相似文献   

18.
To address the obstacles facing the use of palladium‐based homogeneous and heterogeneous catalysts in C─C cross‐coupling reactions, a novel semi‐heterogeneous support was developed based on hyperbranched poly(ethylene glycol)‐block ‐poly(citric acid)‐functionalized Fe3O4 magnetic nanoparticles (Fe3O4@PCA‐b ‐PEG). Because of the surface modification of the Fe3O4 nanoparticles with amphiphilic and hyperbranched polymers (PCA‐b ‐PEG), these hybrid materials are not only soluble in a wide range of solvents (e.g. water, ethanol and dimethylformamide) but also are able to trap Pd2+ ions via complex formation of free carboxyl groups of the PCA dendrimer with metal ions. The reduction of trapped palladium ions in the dendritic shell of Fe3O4@PCA‐b ‐PEG leads to immobilized palladium nanoparticles. The morphology and structural features of the catalyst were characterized using various microscopic and spectroscopic techniques. The catalyst was effectively used in the palladium‐catalysed Mizoroki–Heck coupling reaction in water as a green solvent. In addition, the catalyst can be easily recovered from the reaction mixture by applying an external magnetic field and reused for more than ten consecutive cycles without much loss in activity, exhibiting an example of a sustainable and green methodology.  相似文献   

19.
Evidence is presented that the dimeric π-allylic species [(η3-allyl)PdCl]2 is not intermediate in the Li2Pd2Cl6-catalysed allylic H/D exchange in alkenes. Neither H/D exchange in α-methylstyrene, nor enrichment of [(η3-2-PhC3H4)PdCl]2, was observed when the latter complex was incubated at 100°C in D3CCOOD either in the presence or in the absence of PhC(CH3)?CH2, respectively. The kinetics of H/D exchange in α-methylstyrene catalysed by Li2Pd2Cl6 were studied in some detail. The exchange proceeds at highest rates when reduction of palladium(II) takes place and is much slower in the presence of 1,4-benzoquinone as a palladium reoxidant. The exchange rate is directly proportional to the alkene and catalyst concentrations and independent of the reoxidant concentration. It is suggested that the palladium(II)-catalysed exchange involves an intermediate hydrid-allyl species where palladium has a formal oxidation state of IV.  相似文献   

20.
The palladium(I) and platinum(I) complexes [(CH3NC)6M2]2+ undergo substitution reactions with isocyanides, phosphines and halide or pseudohalide ions. With triphenylphosphine, axial substitution is preferred. The product [(CH3NC)5(Ph3P)Pd2]2+ is fluxional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号