首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
New dioxocyclam derivatives bearing two anthracene fluorophores were prepared, and their fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 2 having anthrylacetamide moieties exhibited pronounced Hg2+- and Cu2+-selective fluoroionophoric properties in aqueous acetonitrile solution over other representative transition metal ions, as well as alkali and alkaline earth metal ions. Chemosensor 2 also exhibited Hg2+ and Cu2+ selectivity under competitive conditions in the presence of physiologically and environmentally important metal ions. The detection limits for the sensing of Hg2+ and Cu2+ ions were 7.8 × 10−6 and 1.5 × 10−6 M, respectively, in aqueous 95% acetonitrile solution.  相似文献   

2.
Ju Hee Kim 《Tetrahedron letters》2004,45(41):7557-7561
A new ionophore having two pyrenylacetamide moieties based on the p-tert-butylcalix[4]arene-diaza-crown ether has been prepared and its fluoroionophoric properties were investigated. Bis(pyrenyl) derivative was found to exhibit selective ON-OFF type sensing behavior toward Hg2+ ions over other representative transition and heavy metal ions. The fluorescence quenching efficiency of larger than 20-fold was observed with 100 equiv of Hg2+ ions and the association constant was found to be 4.5 × 104 M−1 in methanol. The ionophore also exhibited a very efficient quenching of excimer fluorescence selectively upon treatment with Hg2+ ions in 50% aqueous methanol solution. The observed Hg2+-selective ON-OFF type fluorescence behavior could be utilized as efficient sensing and switching devices for the design of other supramolecular systems.  相似文献   

3.
Bis(pyrene) derivative of diazatetrathia-crown ether has been prepared and its Hg2+-selective fluoroionophoric properties were investigated. The compound showed a pronounced Hg2+-selectivity and other metal ions except for Cu2+ showed almost no discernible responses. The Hg2+-selectivity of the compound was also confirmed by the competitive experiments performed in the presence of physiologically important metal ions and the detection limit was found to be 1.6 × 10−6 M. The prominent selective and efficient fluorescence quenching behavior could be utilized as a new chemosensing system for the analysis of toxic Hg2+ ions in aqueous environment.  相似文献   

4.
Diametrically disubstituted bis(anthrylmethyl) derivative of 1,8-dimethylcyclam exhibited pronounced Hg2+- and Cd2+-selective fluorogenic behaviors in aqueous acetonitrile solution. A distinctive OFF-ON type signaling was observed for Hg2+ and Cd2+ ions in aqueous acetonitrile (CH3CN-H2O = 90:10, v/v) solution, while a selective ON-OFF type switching behavior toward Hg2+ ions was observed in solution having higher water content (CH3CN-H2O = 50:50, v/v). The detection limit for the analysis of Hg2+ ions in 50% aqueous acetonitrile was found to be 3.8 × 10−6 M. The selective OR logic gate behavior of the prepared compound toward two toxic heavy metal ions of Hg2+ and Cd2+ ions in CH3CN-H2O (90:10, v/v) suggests the possibility as a new chemosensing device for the two important target metal ions.  相似文献   

5.
Yu C  Chen L  Zhang J  Li J  Liu P  Wang W  Yan B 《Talanta》2011,85(3):1627-1633
A novel Cu2+-specific “off-on” fluorescent chemosensor of naphthalimide modified rhodamine B (naphthalimide modified rhodamine B chemosensor, NRC) was designed and synthesized, based on the equilibrium between the spirolactam (non-fluorescence) and the ring-opened amide (fluorescence). The chemosensor NRC showed high Cu2+-selective fluorescence enhancement over commonly coexistent metal ions or anions in neutral aqueous media. The limit of detection (LOD) based on 3 × δblank/k was obtained as low as 0.18 μM of Cu2+, as well as an excellent linearity of 0.05-4.5 μM (R = 0.999), indicating the chemosensor of high sensitivity and wide quantitation range. And also the coordination mode with 1:1 stoichiometry was proposed between NRC and Cu2+. In addition, the effects of pH, co-existing metal ions and anions, and the reversibility were investigated in detail. It was also demonstrated that the NRC could be used as an excellent “off-on” fluorescent chemosensor for the measurement of Cu2+ in living cells with satisfying results, which further displayed its valuable applications in biological systems.  相似文献   

6.
A novel fluorometric sensor bearing three dansyl moieties based on tris[2-(2-aminoethylthio)ethyl]amine was prepared by a simple approach using a conventional two-step synthesis. The sensor exhibits highly Hg2+-selective ON-OFF fluorescence quenching behavior in aqueous acetonitrile solutions and is shown to discriminate various competing metal ions, particularly Cu2+, Ag+, and Pb2+ as well as Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Na+, Ni2+, and Zn2+, with a detection limit of 1.15 × 10−7 M or 23 ppb.  相似文献   

7.
A simple fluorescent sensor has been developed for the ratiometric recognition of Mg2+ in semi-aqueous solution at pH 7.0. The sensor, a Schiff base, undergoes Excited State Intramolecular Proton Transfer (ESIPT) to generate a keto tautomer with proficient Mg2+ binding capability. The sensor displays good selectivity over other metal ions including alkali/alkali earth ions and can measure Mg2+ ion concentration between 2.0 and 30.0 μM. The binding stoichiometry was established as 2:1 (host:guest) with an association constant (K21) of (1.4 ± 0.1) × 104 M−2. The sensor could potentially be used to detect conditions such as hypermagnesaemia.  相似文献   

8.
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe3+ ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe3+-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe3+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10−4 to 1.0 × 10−7 M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe3+ ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

9.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

10.
A new intramolecular charge transfer (ICT) probe 3 is found to display a highly selective photophysical response in the presence of Zn2+, among various biologically significant metal ions examined. The absorption band of 3 is red shifted by 84 nm and the fluorescence intensity increases 13-fold in the presence of Zn2+. The binding interaction follows the order Zn2+ > Cd2+ > Mg2+ > Ba2+ > Ca2+ > K+ ≅ Na+ ≅ Li+ and the stability constant for 3 + Zn2+ is over an order of magnitude higher compared to biologically competing Ca2+ and Mg2+.  相似文献   

11.
Singh AK  Saxena P  Mehtab S  Gupta B 《Talanta》2006,69(2):521-526
A new PVC membrane electrode based on 5,7,12,14-dibenzo-2,3,9,10-tetraoxa-1,4,8,11-tetraazacyclotetradecane (I) as an ion carrier, o-nitrophenyloctyl ether (o-NPOE) as solvent mediator and sodium tetraphenylborate (NaTPB) as lipophilic additive was fabricated and investigated as Sr2+-selective electrode. The best performance was exhibited by the membrane having composition 8:200:4:120 (I:o-NPOE:NaTPB:PVC). The electrode exhibited a Nernstian response for strontium ion over a wide concentration range 3.98 × 10−6 to 1.0 × 10−1 M with a slope of 29.0 ± 0.1 mV/decade of concentration and a detection limit of 2.82 × 10−6 M. It showed a response time of less than 10 s and could be used for at least 3 months without any divergence in potential. The proposed electrode showed a good discriminating ability towards strontium(II) ion over a wide variety of other metal ions including alkali, alkaline earth, transition, and heavy metal ions. The electrode can be used in the pH range of 2.5-10.5 and in mixtures containing up to 35% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of strontium ion against EDTA.  相似文献   

12.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

13.
A chemosensor based upon the sugar-aza-crown ether 7 with one anthracenetriazolymethyl moiety was prepared and its fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 7 exhibits highly selective recognition toward Cu2+ ion among a series of tested metal ions in MeOH solution. The association constant for 7∗Cu2+ in MeOH solution was calculated to be 2.5 × 104 M−1.  相似文献   

14.
The stability and in vivo robustness of [177Lu]Lu–DOTP as a potential bone-targeting radiopharmaceutical was determined with the aid of thermodynamic blood plasma modeling simulations. Glass electrode potentiometry was employed to measure the stability constants of the complexes of Lu3+ with DOTP. Similarly, the complexes of DOTP with a selection of the important physiological metal ions: Ca2+, Mg2+, and Cu2+ were determined, representing the typical interactions that the ligand would encounter upon administration. This made possible the construction of a blood plasma model of DOTP, aiding in establishing the potential susceptibility of the radiopharmaceutical. The ligand binds predominantly to calcium in vivo, accounting for 59.6% of that initially introduced as a component of the Lu–DOTP complex. Furthermore, due to a preference of the DOTP to bind to Cu2+ it causes mobilization of the ions in blood plasma, and would therefore indicate a deficiency if the ligand is administered at a concentration of 8.5 × 10−5 mol dm−3. The lutetium-ions are preferentially bound to DOTP, with as much as 98.1% of the Lu3+ occupying the ligand under physiological conditions.  相似文献   

15.
A simple benzoyl hydrazine derivative P was successfully synthesized and characterized as Mg2+-selective fluorescent probe. The binding of P with Mg2+ caused an obvious fluorescence enhancement at 482 nm. The fluorescent, UV-vis spectra, 1H-NMR, and IR spectra confirmed the formation of P-Mg2+ complex, and the formation of a 1:1 stoichiometry complex was proved by Job’s plot and mass spectrometry. The recognition mechanism of P to Mg2+ was owing to the photoinduced electron transfer effect (PET). The fluorescent response was linear in the range of 0.9–4.0 µM with the detection limit of 0.3 µM Mg2+ in water–ethanol solution (1:9, v:v, pH10.0, 20 mM HEPES). In addition, the results of cell imaging of Mg2+ in Hl-7701 cells was satisfying.  相似文献   

16.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

17.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

18.
A novel macromolecule based on 2-[3-(2-aminoethylthio)propylthio]ethanamine covalently bound to two 7-nitrobenzo-2-oxa-1,3-diazolyl moieties was prepared as a fluoroionophore and a chromophore for the selective optical detection of Hg2+. The sensor was prepared in two steps and its fluoroionophoric and chromophoric properties toward various transition metal, alkali, and alkali earth cations were investigated. Compound 4 selectively binds Hg2+, and the binding is indicated by both fluorescence quenching and a chromogenic change which can be detected by the naked eye. In an 80:20 acetonitrile/water solvent mixture, 4 acts as an ON-OFF fluorescence switch upon Hg2+ binding, exhibiting efficient quenching and a detection limit of 10−7 M or 20 ppb.  相似文献   

19.
Hongtao Fan  Weijia Li  Shuang Jin 《Talanta》2009,79(5):1228-35
An aqueous solution containing sodium polyacrylate (PA, 0.0030 M) was used in diffusive gradients in thin-films technique (DGT) to measure DGT-labile Cu2+ and Cd2+ concentrations. The DGT devices (PA DGT) were validated in four types of solutions, including synthetic river waters containing metal ions with or without complexing EDTA, natural river water (Hun River, Shenyang, China) spiked with Cu2+ and Cd2+, and an industrial wastewater (Shenyang, China). Results showed that only free metal ions were measured by PA DGT, recovery = 98.79% for Cu2+ and recovery = 97.80% for Cd2+ in solutions containing only free metal ions, recovery = 51.02% for Cu2+ and recovery = 51.92% for Cd2+ in solution with metal/EDTA molar ratio of 2:1 and recovery = 0 in solutions with metal/EDTA molar ratio of 1:1 and 1:2. These indicated that the complexes of Cu-EDTA and Cd-EDTA were DGT-inert or not DGT-labile. The DGT performance in spiked river water (recovery = 8.47% for Cu2+ and recovery = 27.48% for Cd2+) and in industrial wastewater (recovery = 14.16% for Cd2+) were also investigated. Conditional stability constants (log K) of PA-Cu and PA-Cd complexes were determined as 6.98 and 5.61, respectively, indicating strong interaction between PA and the metals.  相似文献   

20.
A holographic sensor for real-time detection of divalent metal ions (Ca2+, Mg2+, Ni2+, Co2+ and Zn2+) has been fabricated by incorporating a chelating monomer into a hydrogel matrix. A methacrylated analogue of iminodiacetic acid (IDA) was prepared and co-polymerised with hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EDMA) as a cross-linker to form polymer films. A silver-based reflection hologram was incorporated into the hydrogel by diffusion followed by holographic recording using a frequency-doubled Nd/YAG laser. Changes in the replay wavelength of the hologram were used to characterise the swelling behaviour of the matrix as a function of its chemical composition and concentration of analyte in the media. The effects of active monomer, cross-linker, pH and ionic strength on the swelling of the matrix and on metal detection sensitivity have been studied. Polymers containing >10 mol% of chelating monomer and 6 mol% of cross-linker showed significant responses (46.3 nm) within 30 s at an ion concentration of 0-40 nm. The selectivity of the holograms towards the different ions tested was Ni2+>Zn2+>Co2+>Ca2+>Mg2+. The sensor showed fully reversible responses, permitting real-time monitoring of calcium ion efflux during the germination of Bacillus megaterium spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号