首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Syntheses and Crystal Structures of New Selenido-bridged Ruthenium Clusters The reaction of Se(SiMe3)2 with [RuCl2(PPh3)3], or a mixture of [RuCl2(PPh3)3] and alkylphosphines leads to the formation of selenido-bridged ruthenium clusters. In this publication the compounds [Ru6Se8(PPh3)6] ( 1 ), [Ru6Se8(PEt3)6] ( 2 ) und[Ru6Se8(PnPr3)6] ( 3 ) are described.The compounds 1-3 contain Ru616+ cluster cores with Ru2+ and Ru3+ centers. The structures of these compounds were elucidated by single crystal X-ray structural analyses.  相似文献   

2.
The one-dimensional linear polymer W–Se–Ag compound {[Et4N][(μ-WSe4)Ag]}n (1) was obtained from the reaction of [Et4N]2[WSe4] and AgNO3 in a mixed solvent, MeCN/DMF (1:10). Treatment of a solution of 1 in Me2SO with Ln(NO3)3 · 6H2O resulted in the formation of a helical chain polymer compound {[Ln(Me2SO)8][(μ3-WSe4)3Ag3]}n (Ln = Pr 2, Er 3). The solid-state structures of the three polymer compounds 1, 2, and 3 have been established by X-ray crystallography. The third-order non-linear optical properties of the linear polymer compound 1 were determined by z-scan techniques with 7 ns pulses at 532 nm.  相似文献   

3.
Organometallic Compounds of the Lanthanides. 113. [(tert-Butylcyclopentadienyl)(cyclopentadienyl)dimethylsilane] Complexes of selected Lanthanides The reaction of [Me2Si(C5H4)(tBuC5H3)]Li2 with LnCl3 (Ln = Y, Nd, Sm, Lu) in THF results in the formation of the chiral, dimeric complexes [Me2Si(C5H4)(tBuC5H3)]Ln(μ-Cl)2Li(THF)(Et2O) [Ln = Y ( 1 ), Nd ( 2 ), Sm ( 3 ), Lu ( 4 )]. The 1H-, 13C-NMR- and the mass spectra of the new compounds as well as the X-ray crystal structures of 2 a and 3 a were discussed.  相似文献   

4.
Thermolysis of the dinuclear compound [Cp*IrCl2]2 (1) with ClRe(CO)5 (2) leads to the formation of the confacial bioctahedral compound Cp*Ir(μ-Cl)3Re(CO)3 (3) in high yield. Whereas the substitution of the chloride ligands in 3 is observed on treatment with excess p-methylbenzenethiol to furnish the sulfido-bridged compound Cp*Ir(μ-SC6H4Me-4)3Re(CO)3 (4), 3 undergoes fragmentation upon reaction with tertiary phosphines [PPh3 and P(OMe)3] to furnish the mononuclear compounds Cp*IrCl2P and fac-ClRe(CO)3P2. Both 3 and 4 have been isolated and fully characterized in solution by IR and 1H NMR spectroscopies, and their solid-state structures have been established by X-ray crystallography. The redox properties of 3 and 4 have been explored by cyclic voltammetry, and the results are discussed relative to extended Hückel MO calculations.  相似文献   

5.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

6.
Synthesis and characterization of new strontium 4-carboxyphenylphosphonates   总被引:1,自引:0,他引:1  
Several new strontium 4-carboxyphenylphosphonates, i.e., two modifications of Sr(HOOCC6H4PO3H)2, SrH(OOCC6H4PO3)·H2O, Sr3(OOCC6H4PO3)2·4H2O and Sr3(OOCC6H4PO3)2·5.7H2O were prepared and characterized by elemental analysis, thermogravimetry, X-ray powder diffraction and infrared spectroscopy. It was found that the compositions of these compounds depend on the acidity of the reaction medium. In addition, the presented compounds are interconvertible in dependence on pH. The position of the acid hydrogen atom in SrH(OOCC6H4PO3)·H2O was determined from the IR spectra of the studied compounds.The structure of the β modification of Sr(HOOCC6H4PO3H)2 was solved from its X-ray powder diffraction pattern using an ab initio method (the FOX program) with subsequent Rietveld refinement in the FULLPROF program. The compound is monoclinic, with the space group P21/c (No. 14), a=49.88(2), b=7.867(2), c=5.602(3) Å, β=128.68(2)°, and Z=4. It has a one-dimensional structure with an inorganic part built of SrO8 distorted tetragonal antiprisms.  相似文献   

7.
Electrochemical generation of organic anion-radicals in the presence of fluoroorganosilanes causes the chain addition reaction. Adducts of CFCl2SiMe3, CFClCFSiMe3 and CF3SiMe3 with benzaldehyde were obtained with conversion efficiency up to 8000%.Electroreduction of bis-(trifluoromethyl)mercury (II) was established to be the route for the intermediate formation of trifluoromethyl anion, which was trapped by the reactions with benzaldehyde, Me3SiCl and bromobenzonitrile.The use of salen Ni(II) complex as mediator allows the electrochemical reduction of polyfluoroalkylchlorides at the potentials more than 1 V higher than their reduction potentials.  相似文献   

8.
Halide Ions as Catalyst: Metalcentered C–C Bond Formation Proceeded from Acetonitril AlMe3 reacts at 20 ?C in acetonitrile to the complex [Me3Al(NCMe)] ( 1 ). By addition of cesium halides (X = F, Cl, Br) a trimerisation to the heterocycle [Me2Al{HNC(Me)}2C(CN)] ( 2 ) has been observed. The reaction might be carried out under catalytic conditions (1–2 mol% CsX). The gallium complex [Me2Ga{HNC(Me)}2 · C(CN)] ( 3 ), generated under similar reaction conditions, can be converted to the silylated compound [Me2Ga{Me3SiNC(Me)}2C(CN)] ( 4 ) by successive treatment with two equivalents n‐butyllithium and Me3SiCl. 3 reacts under hydrolysis conditions (1 M hydrochloric acid) to the iminium salt [{H2NC(Me)}2C(CN)]Cl ( 5 ). A mixture of H2O, Ph2PCl and 3 in THF/toluene leads in a unusual conversion to the diphospane derivative [Ph2P–P(O)(Me2GaCl)] ( 6 ). 1 , 2 , 4 , 5 and 6 have been characterized by NMR, IR and MS techniques. X‐ray structure analyses were performed with 1 , 2 , 4 and 6 · 0.5 toluene. According this 1 possesses an almost linear axis AlNCC [Al1–N1–C3: 179,5(2)?; N1–C3–C4: 179,7(4)?]. 2 is an AlN2C3 six‐membered heterocycle with two iminium fuctions. One N–H group is responsible for a intermolecular chain‐formation through hydrogen bridges to an adjacent nitrile group along the direction [010]. The basic structural motif of the heterocycle 3 has been maintained after silylation to 4 . In 6 · 0.5 toluene an unit Me2GaCl, originated from 3 , is coordinated to the oxygen atom of the diphosphane oxide Ph2P–P(O)Ph2.  相似文献   

9.
Preparation, Properties, and Crystal Structure of RuSn6[(Al1/3–xSi3x/4)O4]2 (0 ≤ x ≤ 1/3) – an Oxide with isolated RuSn6 Octahedra RuSn6[(Al1/3–xSi3x/4)O4]2 is obtained by the solid state reaction of RuO2, SnO2, Sn, and Si in an Al2O3‐crucible at 1273 to 1373 K. The compound is cubic with the space group Fm 3 m (a = 9.941(1) Å, Z = 4, R1 = 0.0277, wR2 = 0.0619), a semiconductor and stable in air. Results of Mößbauer measurements as well as bond length‐bond strength calculations justify the ionic formulation Ru2+Sn62+[(Al1/3–x3+Si3x/44+)O42–]2. The central motif of the crystal structure are separated RuSn6‐octahedrea. These are interconnected by oxygen atoms, arranged tetrahedrely above the surfaces of the RuSn6‐octahedrea and partialy filled with Al and Si, respectively. Because of these features the compound can be considered as a variant of the crystal structure type of pentlandite.  相似文献   

10.
The compound [PbAsSiiPr3]6 ( 1 ) could be obtained by the reaction of PbCl2 with iPr3SiAs(SiMe3)2 in THF at 0 °C. Central structural motif is a hexagonal prism built by six lead and six arsenic atoms. The average Pb—As bond length is 281 pm. The cluster crystallizes in the monoclinic space group C2/c, the lattice constants are: a = 4460.8(9) b = 2296.6(5), c = 2734.4(6) pm, β = 117.57(3)°. The thermogravimetric analysis in vacuum shows the tendecy of 1 to decompose under formation of elementary lead and volatile arsenic compounds.  相似文献   

11.
Di- and Trinuclear Complexes of WS42– with Tricarbonylrhenium(I) and -manganese(I) Fragments: Structure, Spectroscopy, and Electrochemistry The reaction of (NEt4)2WS4 with two equivalents of M(CO)5(O3SCF3), M = Mn or Re, in acetonitrile yielded the crystallographically characterized neutral compounds [(CH3CN)(OC)3M(μ-S2WS2)M(CO)3(NCCH3)]. The individual molecules are chiral and contain WS4 and MS2(CO)3(CH3CN) moieties in approximately tetrahedral and octahedral configurations, respectively. Vibrational and electronic absorption spectra are in agreement with the crystal structure, comparable results were obtained for trinuclear complexes [(L)(OC)3Re(μ-S2WS2)Re(CO)3(L)](NEt4)2, L = Cl or CN, and for the dinuclear systems [(WS4)Re(CO)3(CH3CN)](NEt4) and [(WS4)Re(CO)3Cl](NEt4)2. Electrochemical processes are irreversible due to the lability of acetonitrile or chloride ligands in corresponding complexes, however, the cyanide compound [(NC)(OC)3Re(μ-S2WS2)Re(CO)3(CN)]2– showed reversible one-electron reduction to a first tetrathiotungstate(V) species as detected by UV/Vis/IR spectroelectrochemistry.  相似文献   

12.
Investigations of Sb–Sb Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of SbCl3 with various transition metal metalates of the type K[MLn] [MLn = Ni(CO)Cp*, Fe(CO)Cp′, Co(CO)4; Cp* = η5‐C5Me5, Cp′ = η5‐C5H4Me] in the presence of [Cr(CO)5thf] have been studied. With K[Ni(CO)Cp*] and K[Fe(CO)2Cp′] the trigonal‐pyramidal complexes [(μ3‐Sb){Ni(CO)Cp*}3] ( 1 ) and [(μ3‐Sb){Fe · (CO)2Cp′}3] ( 2 ), respectively, are obtained. The reaction with K[Co(CO)4] leads to the tetrahedral cluster [Co3(CO)93‐Sb{Cr(CO)5})] ( 3 ) and the butterfly cluster [Co2(CO)6(μ‐SbCl)(μ‐SbCl{Cr(CO)5})] ( 4 ). All products are characterised by X‐ray crystal structure determination. In contrast to the corresponding [(CO)5CrPCl3] system forming P–P bonds, starting from SbCl3/[Cr(CO)5thf] does not cause a Sb–Sb bond formation.  相似文献   

13.
The reactions of cyclotriphosphazene, N3P3Cl6 (1), in a 1:1.2 stoichiometry with the sodium derivative of seven diols [ethane- (2a), 1,3-propane- (2b), 1,4-butane- (2c), 1,5-pentane- (2d), 1,6-hexane- (2e), 1,8-octane- (2f) and 1,10-decane- (2g) diol] in THF solution at room temperature have been used to investigate the effect of chain length on the formation of reaction products. Although no new products were found for the reaction of 1 with diols 2a-c compared to those in the literature using other bases and solution conditions, the reactions of 1 with the diols 2d-g gave six different types of products, whose structures have been characterized by elemental analysis, mass spectrometry, 1H and 31P NMR spectroscopy; ansa compounds N3P3Cl4[O(CH2)nO], (5d-5g); single-bridged compounds N3P3Cl5[O(CH2)nO]N3P3Cl5(6d-6f); double-bridged compounds N3P3Cl4[O(CH2)nO]2N3P3Cl4 (7d-7g, syn and anti) and triple-bridged compounds, N3P3Cl3[O(CH2)nO]3N3P3Cl3 (8d-f). Where suitable single crystals were obtained, X-ray crystallographic studies confirmed the structures of two ansa compounds (5d and 5f), one single-bridged compound (6e), and five double-bridged compounds (meso-anti for 7d, 7e, 7f and meso-syn for 7d and 7f). 31P NMR measurements of the reaction mixtures were used to quantify the formation of products for the reactions 1 with all the diols, 2a-g; it is found that, with increasing chain length of the diol, there is a decrease in the products formed by intramolecular reactions (spiro and ansa derivatives) and a concomitant increase in the amounts of products formed by intermolecular reactions (single-, double- and triple-bridged derivatives) of cyclophosphazene.  相似文献   

14.
Reactions between Cl3S3N3 and TeCl4 provide [S4N3+][Te2Cl9] and [ ][TeCl5], the latter molecule, for the first time in SN‐chemistry, contains a five membered ring with three nitrogen atoms linked to each other. The course of this unusual reaction is discussed and both structures are proved by X‐ray structure determinations. New routes to the known cages (XTeNSN)3N (X = F, Cl) result from the decomposition of X2Te(NSN)2TeX2 in tetrahydrofuran. In the presence of MCl3 (M = Ga, Al, Fe) besides (ClTeNSN)3N�2THF also [MCl2(THF)4+][TeCl5�THF] could be isolated proving that TeCl4 is an additional product in this decomposition process. The crystal structures for (ClTeNSN)3N�2THF and [Cl2Al(THF)4+]‐[TeCl5�THF] are determined. The reaction steps for this complicated unforeseen decomposition, based on known reactions and substances, are discussed. Strong Lewis‐acids such as AlF3 or AsF5 form with F2Te(NSN)2TeF2 mono‐ and tetrafold positively charged cations respectively. Metathetical reactions between F2Te(NSN)2‐TeF2 and (CH3)3SiR provide R(F)Te(NSN)2Te(F)R [R = CF3C(O)O‐ and CF3SO2O‐]. When R2Te(NSO)2 is treated with TeF4 the already mentioned compounds and F3TeR are formed. The reaction of TeCl4 with R2Te(NSO)2 gives Cl3TeR and unsubstituted Cl6Te2N2S ( 1 ). The condensation of TeX4 with [(CH3)3SiNSN]2S provides the corresponding tellurium containing eight membered rings X2Te(NSN)2S (X = F, Cl).  相似文献   

15.
Reduction of [TaCl5] by six equivalents of alkali metal naphthalenide in 1,2-dimethoxyethane at −60°C followed by treatment with gaseous PF3 provides the first homoleptic phosphane complex containing tantalum in the −1 oxidation state, [Ta(PF3)6]. This can be protonated by concentrated sulfuric acid to yield the previously unknown highly acidic and volatile hydride [HTa(PF3)6]. An improved normal-pressure synthesis of [Ta(CO)6] is described. Reduction of the latter species by sodium in liquid ammonia gives the carbonyl trianion [Ta(CO)5]3− which undergoes monoprotonation and stannylation to form [HTa(CO)5]2− and [Ph3SnTa(CO)5]2−, respectively. The hydride is a useful precursor to [(Ph3PAu)3Ta(CO)5], the only known gold cluster of tantalum.  相似文献   

16.
Treatment of RnGeCl4−n with {S(C6H3SH)2O} (1) afforded the stable phenoxathiin-4,6-dithiolate compounds [{S(C6H3S)2O}GeR2] [n = 2; R = Et (2), Ph (3)] and [{S(C6H3S)2O}GeRCl] [n = 1; R = Et (4), Ph (5)]. Treatment of GeCl4 with 1 in benzene afforded the dichloro compound [{S(C6H3S)2O}GeCl2] (8) at 7 °C. Bromo compounds [{S(C6H3S)2O}GeRBr] [R = Et (6), Ph (7)] and [{S(C6H3S)2O}GeBr2] (9) were synthesized by halogen exchange from the appropriate chloro derivative using KBr/HBr. X-ray structure determinations of diorganyl dithiolate compounds 2 and 3 revealed that germanium atom is contained in a boat–chair-shaped eight-membered central ring and displays a tetrahedral geometry. In contrast, compounds 46 display a boat–boat-shaped central ring with a significant intramolecular transannular O···Ge interaction. The geometry of the pentacoordinate Ge atom in these last complexes may be described as distorted trigonal bipyramidal with a 62–65% distortion displacement.  相似文献   

17.
Abstract

The reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6 (1) with 2-mercaptoethanol, 2-HS-CH2-CH2-OH (2), in (1:1, 1:2 and 1:3) mole ratios, in excess of NaH, in THF and diethylether solutions yield a total of 6 novel products: one mono spiro, N3P3Cl4[O-CH2-CH2-S] (3); one mono-substituted open chain, N3P3Cl5[S-CH2-CH2-OH] (4); one dispiro, N3P3Cl2[O-CH2-CH2-S]2 (5); one tri-substituted open chain, N3P3Cl3[S-CH2-CH2-OH]3 (6); one tris-spiro, N3P3[O-CH2-CH2-S]3 (7) and one disubstituted open chain, N3P3Cl4[S-CH2-CH2-OH]2 (8) derivatives. The spiro products (3, 5 and 7) are formed as the major products in this system and all of the synthesized compounds are found to be stable at room temperature. The structures of the derived compounds were elucidated by elemental analysis, TLC-MS, 31P and 1H NMR spectral data. For evaluation of melting behavior of derivatives (6) and (7), thermal transition peaks and their corresponding enthalpies were determined via DSC technique.  相似文献   

18.
The title compounds were prepared from the elemental components at high temperatures. The compounds LnOsGa3 crystallize with the cubic TmRuGa3 type structure which was refined from four‐circle X‐ray diffractometer data of TbOsGa3: Pmm, Z = 3, a = 640.8(1) pm, R = 0.014 for 173 structure factors and 10 variable parameters. The other gallides crystallize with a new structure type which was determined from single‐crystal X‐ray data of CeOsGa4: Pmma, Z = 6, a = 963.9(2) pm, b = 880.1(1) pm, c = 767.0(1) pm, R = 0.030 for 744 F values and 56 variables. The structure may be considered as consisting of two kinds of alternating layers, although bonding within and between the layers is of similar strength. One kind of layers (A) is slightly puckered, two‐dimensionally infinite, hexagonal close packed, with the composition OsGa3; the other kind of layers (B) is planar with the composition CeGa. The structure is closely related to that of Y2Co3Ga9 where the corresponding layers have the compositions Co3Ga6 (A) and Y2Ga3 (B).  相似文献   

19.
The reaction of the sterically shielded phosphane derivative, dichlorodiethylaminophosphane, Cl2PNEt2, with an excess of a mixture of 2,6‐bis(trifluoromethyl) and 2,4‐bis(trifluoromethyl)phenyl lithium gives bis[2,4‐bis(trifluoromethyl)phenyl]diethylaminophosphane, [2,4‐(CF3)2C6H3]2PNEt2, in 72 % yield as a colourless solid, while 2,6‐bis(trifluoromethyl)phenyl lithium remains unchanged in solution. The amino derivative crystallizes in the monoclinic space group P21/c (a 869.2(1), b 1857.4(1), c 1357.6(1) pm, β 100.57(4)°, Z = 4). Treatment of [2,4‐(CF3)2C6H3]2PNEt2 in CHCl3 solution with conc. HCl allows the synthesis of [2,4‐(CF3)2C6H3)]2PCl. [2,4‐(CF3)2C6H3]2PCl reacts with H2O in THF solution with quantitative formation of the corresponding secondary phosphane oxide. To obtain bis[2,4‐bis(trifluoromethyl)phenyl]phosphinic acid, [2,4‐(CF3)2C6H3]2P(O)OH, quantitatively, a CHCl3 solution of [2,4‐(CF3)2C6H3]2P(O)H, has to be stirred in an NO2 atmosphere. The phosphinic acid crystallizes is the triclinic space group (a 754.2(1), b 927.6(2), c 1305.5(2) pm, α 85.11(2)°, β 75.45(1)°, γ 79.99(2)°, Z = 2). From the reaction of the phosphinic acid with either elemental sodium or with cyanide salts, the corresponding phosphinate salts are obtained in an almost quantitatively yield.  相似文献   

20.
A reliable synthesis of unstable and highly reactive BrO2F is reported. This compound can be converted into BrO2+SbF6?, BrO2+AsF6?, and BrO2+AsF6??2 BrO2F. The latter decomposes into mixed‐valent Br3O4?Br2+AsF6? with five‐, three‐, one‐, and zero‐valent bromine. BrO2+ H(SO3CF3)2? is formed with HSO3CF3. Excess BrO2F yields mixed‐valent Br3O6+OSO3CF3? with five‐ and three‐valent bromine. Reactions of BrO2F and MoF5 in SO2ClF or CH2ClF result in Cl2BrO6+Mo3O3F13?. The reaction of BrO2F with (CF3CO)2O and NO2 produces O2Br‐O‐CO‐CF3 and the known NO2+Br(ONO2)2?. All of these compounds are thermodynamically unstable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号