首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the fabrication of microarrays consisting of G protein-coupled receptors (GPCRs) on surfaces coated with gamma-aminopropylsilane (GAPS). Microspots of model membranes on GAPS-coated surfaces were observed to have several desired properties-high mechanical stability, long range lateral fluidity, and a thickness corresponding to a lipid bilayer in the bulk of the microspot. GPCR arrays were obtained by printing membrane preparations containing GPCRs using a quill-pin printer. To demonstrate specific binding of ligands, arrays presenting neurotensin (NTR1), adrenergic (beta1), and dopamine (D1) receptors were treated with fluorescently labeled neurotensin (BT-NT). Fluorescence images revealed binding only to microspots corresponding to the neurotensin receptor; this specificity was further demonstrated by the inhibition of binding in the presence of excess unlabeled neurotensin. The ability of GPCR arrays to enable selectivity studies between the different subtypes of a receptor was examined by printing arrays consisting of three subtypes of the adrenergic receptor: beta1, beta2, and alpha2A. When treated with fluorescently labeled CGP 12177, a cognate antagonist analogue specific to beta-adrenergic receptors, binding was only observed to microspots of the beta1 and beta2 receptors. Furthermore, binding of labeled CGP 12177 was inhibited when the arrays were incubated with solutions also containing ICI 118551, and in a manner consistent with the higher affinity of ICI 118551 for the beta2 receptor relative to that for the beta1 receptor. The ability to estimate binding affinities of compounds using GPCR arrays was examined using a competitive binding assay with BT-NT and unlabeled neurotensin on NTR1 arrays. The estimated IC(50) value (2 nM) for neurotensin is in agreement with the literature; this agreement suggests that the receptor -G protein complex is preserved in the microspot. This first ever demonstration of direct pin-printing of membrane proteins and ligand-binding assays thereof fills a significant void in protein microchip technology--the lack of practical microarray-based methods for membrane proteins.  相似文献   

2.
beta 2-Adrenoceptor agonists (beta-agonists) are well known for their growth promoting and repartitioning effects in many species. Although the use of these compounds to increase muscle mass in stockfarming is prohibited within the EU, under directive 96/22/EC, significant illegal use still occurs. With legal and illegal synthesis of new structurally related compounds, the detection of traditional beta-agonists and new derivatives becomes increasingly problematical. This method describes the isolation and solubilisation of a beta 2-adrenoceptor from a transfected Chinese hamster ovary cell line, using the detergent digitonin. The solubilised receptor retained its activity and was isolated from the cell membrane at a concentration of 550 +/- 100 fmol mg-1 of solubilised protein. Competition analysis using the tritiated antagonist dihydroalprenolol revealed receptor affinity for five structurally different beta-agonists, with IC50 values ranging from 2.1 +/- 0.76 x 10(-7) M for salmeterol to 1.1 +/- 0.62 x 10(-5) M for ractopamine. This study has demonstrated that transfected cell lines with a high expression of beta 2-adrenoceptors are a convenient source of active receptor material. Solubilised beta 2-adrenoceptors could form the basis of a multi-analyte screening assay for use in routine screening.  相似文献   

3.
With the advent of the recent determination of high-resolution crystal structures of bovine rhodopsin and human beta2 adrenergic receptor (beta2AR), there are still many structure-function relationships to be learned from other G protein-coupled receptors (GPCRs). Many of the pharmaceutically interesting GPCRs cannot be modeled because of their amino acid sequence divergence from bovine rhodopsin and beta2AR. Structure determination of GPCRs can provide new avenues for engineering drugs with greater potency and higher specificity. Several obstacles need to be overcome before membrane protein structural biology becomes routine: over-expression, solubilization, and purification of milligram quantities of active and stable GPCRs. Coordinated iterative efforts are required to generate any significant GPCR over-expression. To formulate guidelines for GPCR purification efforts, we review published conditions for solubilization and purification using detergents and additives. A discussion of sample preparation of GPCRs in detergent phase, bicelles, nanodiscs, or low-density lipoproteins is presented in the context of potential structural biology applications. In addition, a review of the solubilization and purification of successfully crystallized bovine rhodopsin and beta2AR highlights tools that can be used for other GPCRs.  相似文献   

4.
26-Iodopseudodiosgenin (8) and 26-iodopseudodiosgenone (9) were reacted with various nucleophiles (KSCN, KOCN, NaCN, NaN(3) and various amines) to give pseudodiosgenin derivatives (4, 12, 16-20, 26) and pseudodiosgenone derivatives (5, 13, 21-25, 27), respectively. The reactions of 8 and 9 with KOCN gave the elimination products (10) and (11), respectively. The reaction of 9 with NaCN gave 5alpha,26- (14) and 5beta,26-dicyanocholestan-3-one (15). The reaction of 8 with NaN3 gave triazepine derivative (30), while that of 9 gave 26-azidopseudodiosgenone (31). Compound 31 was converted into triazepine derivative (32) by heating at 120 degrees C. The cytotoxicity of the pseudodiosgenins and pseudodiosgenones on P-gp-underexpressing HCT 116 cells and P-gp-overexpressing Hep G2 cells was examined by MTT assay. Pseudodiosgenins 2, 4, 12 and 30 showed strong cytotoxic activity (IC50 values: 2.6+/-0.3-6.7+/-1.4 microM), as did pseudodiosgenones 3, 5, 11, 13, 21-25 and 27 (IC50 values: 1.3+/-0.3-6.4+/-0.3 microM) toward HCT 116 cells. Pseudodiosgenins 12, 16 and 30 (IC50 values: 1.2+/-0.7-2.2+/-0.6 microM) and pseudodiosgenones 22, 23, 25 and 27 (IC50 values: 0.6+/-0.1-2.5+/-0.3 microM) were highly cytotoxic to Hep G2 cells. Compounds 3 and 27 showed efficient antibacterial activity (MIC: 15.6, 10.4 microg/ml) and (MIC: 7.8, 15.6 microg/ml) against Bacillus subtilis and Staphylococcus aureus, respectively.  相似文献   

5.
High Content Screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modelling systems. In this work, we compared a confocal and a non-confocal cellular HCS system, the IN Cell Analyzers(1) 3,000 and 1,000, respectively. As a cellular model system we used the Transfluor technology in the 384-well microtiter plate (MTP) format. The Transfluor HCS assay for G-protein coupled receptor (GPCR) activation is based on the recruitment of a green fluorescent protein-labelled arrestin (ArrGFP) from the cytosol to the plasma membrane. We investigated two GPCRs, the wild-type (wt) beta2 adrenergic receptor (beta2AR) and the beta2AR-enhanced (E), a C-terminally mutated receptor with a higher affinity to arrestin. Upon agonist stimulation, the beta2AR-wt induced the redistribution of ArrGFP to coated pits, the beta2AR-E maintained the interaction with ArrGFP down to the formation of endocytic vesicles. Our findings reveal that the assay is feasible on both instruments, with sufficiently robust Z' statistics. Improved Z' statistics, though, are achieved with the confocal system, particularly in case of weak signals. Moreover, throughput is dramatically higher for the IN Cell Analyzer 3,000. We conclude that, depending on the needs for throughput and assay biology, either instrument may fulfil a successful role in the drug discovery process. Confocal optics, however, provide a better basis for the detection of smaller subcellular structures with lower fluorescence intensity.  相似文献   

6.
Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent‐solubilised membrane proteins often denature and aggregate, resulting in loss of both structure and function. In this study, a novel class of agents, designated mannitol‐based amphiphiles (MNAs), were prepared and characterised for their ability to solubilise and stabilise membrane proteins. Some of MNAs conferred enhanced stability to four membrane proteins including a G protein‐coupled receptor (GPCR), the β2 adrenergic receptor (β2AR), compared to both n‐dodecyl‐d ‐maltoside (DDM) and the other MNAs. These agents were also better than DDM for electron microscopy analysis of the β2AR. The ease of preparation together with the enhanced membrane protein stabilisation efficacy demonstrates the value of these agents for future membrane protein research.  相似文献   

7.
In search for potent and selective beta3-adrenergic receptor (beta3-AR) agonists as potential drugs for the treatment of type II diabetes and obesity, a novel series of 1-(3-chlorophenyl)-2-aminoethanol derivatives were prepared and evaluated for their biological activity at human beta1-, beta2-, and beta3-ARs and rat beta3-AR expressed in Chinese hamster ovary (CHO) cells. Replacement of the right-hand side (RHS, benzene ring) in the 'first generation' beta3-AR agonists BRL 37344 and CL 316243 with a 1H-indole ring gave compound 31 with unique pharmacological properties among beta3-AR agonists. Initial in vitro assays showed that 31 possesses modest rat and human beta3-ARs agonistic activity. Introduction of various substituent into the indole nucleus of 31 afforded a number of compounds with good beta3-ARs agonistic activity. In particular, 90 having a carboxylic acid functionality at the 7-position of the indole nucleus showed the most potent human beta3-AR agonistic activity. Finally, optical resolution of 90 led to the identification of the most promising compound, [3-[(2R)-[[(2R)-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1H-indol-7-yloxy]acetic acid (96, AJ-9677). This compound exhibited potent human beta3-AR agonistic activity (EC50=0.062 nM, IA=116%) with 210- and 103-fold selectivity over human beta2-AR and beta1-AR, respectively. Compound 96 also exhibited potent rat beta3-AR agonistic activity (EC50=0.016 nM, IA=110%). Moreover, repeated oral administration of 96 inhibited body weight gain and significantly decreased glucose, insulin, free fatty acid, and triglyceride concentrations in plasma in KK-Ay/Ta mice. On the basis of this pharmacological profile, 96 entered clinical development as a drug for the treatment of type II diabetes and obesity.  相似文献   

8.
Heterotrimeric GTP-binding proteins (G protein) are known to participate in the transduction of signals from ligand activated receptors to effector molecules to elicit cellular responses. Sustained activation of cAMP-G protein signaling system by agonist results in desensitization of the pathway at receptor levels, however it is not clear whether such receptor responses induce other changes in post-receptor signaling path that are associated with maintenance of AMP levels, i.e. cAMP-forming adenylate cyclase (AC), cAMP-degrading cyclic nucleotide phosphodiesterase (PDE) and cAMP-dependent protein kinase (PKA). Experiments were performed to determine the expression of AC, PDE, and PKA isoforms in SH-SY5Y neuroblastoma cells, in which cAMP system was activated by expressing a constitutively activated mutant of stimulatory G protein (Q227L Gsalpha). Expression of ACI mRNA was increased, but levels of ACVIII and ACIX mRNA were decreased. All of the 4 expressed isoforms of PDE (PDE1C, PDE2, PDE 4A, and PDE4B) were increased in mRNA expression; the levels of PKA RIalpha, RIbeta, and RIIbeta were increased moderately, however, those of RIIalpha and Calpha were increased remarkably. The activities of AC, PDE and PKA were also increased in the SH-SY5Y cells expressing Q227L Gsalpha. The similar changes in expression and activity of AC, PDE and PKA were observed in the SH-SY5Y cells treated with dbcAMP for 6 days. Consequently, it is concluded that the cAMP system adapts at the post-receptor level to a sustained activation of the system by differential expression of the isoforms of AC, PDE, and PKA in SH-SY5Y neuroblastoma. We also showed that an increase in cellular cAMP concentration might mediate the observed changes in the cAMP system.  相似文献   

9.
The antioxidant activity of the crude extract and solvent fractions obtained from the leaves of Bauhinia galpinii was evaluated in terms of capacity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. The crude extract and the more polar solvent fractions (ethyl acetate and butanol) showed considerable antioxidant activity. The antioxidant potential of the extracts, expressed as EC50, ranged between 28.85 +/- 1.28 microg mL(-1)and 118.16 +/- 6.41 microg mL(-1). L-Ascorbic acid was used as a standard (EC50 = 19.79 +/- 0.14 microM). Bioassay guided fractionation of the two active solvent fractions led to the isolation of three flavonoid glycosides, identified as: quercetin-3-O-galactopyranoside (1), myricetin-3-O-galactopyranoside (2), and 2'-O-rhamnosylvitexin (3). These compounds are reported for the first time from this species. The structures of the compounds were determined on the basis of spectral studies (1H NMR, 13C NMR and MS). Their antioxidant potential was evaluated using a DPPH spectrophotometric assay. Compound 2 had higher and 3 had lower antioxidant activity than L-ascorbic acid. No cytotoxic effects were displayed by compounds 1 and 3, but compound 2 was cytotoxic to Vero cells (LC50 = 74.68 microg mL(-1)) and bovine dermis cells (LC50 = 30.69 microg mL(-1)).  相似文献   

10.
The seven-transmembrane-spanning G protein-coupled receptor (GPCR) superfamily plays many important roles in basic biology, human health, and human disease. Here, well-resolved solution NMR spectra are presented for a human GPCR, the vasopressin V2 receptor in detergent micelles. The quality of the NMR spectra indicates that backbone resonance assignments for a majority of resonances are feasible. The key to obtaining high quality spectra appears to be the coupling of methods for expressing the receptor into membranes rather than into inclusion bodies, with use of a biochemically mild lysolipid detergent for membrane extraction, protein purification, and NMR sample preparation.  相似文献   

11.
Adenosine receptors (ARs) are members of the superfamily of G protein-coupled receptors. The homology models of adenosine A1 and A2A receptors were constructed. The high-resolution X-ray structure of bovine rhodopsin and crystal structure of beta2-adrenergic receptor were used as templates. The binding sites of the A1 and A2A ARs were constructed by using data obtained from mutagenesis experiments as well as docking simulations of the respective AR antagonsists DPCPX and XAC. To compare rhodopsin- and beta2-adrenergic-based models, the binding mode of A1 (KW-3902, LUF-5437) and A2A (KW-6002, ZM-241385) ARs antagonists were also examined. The differences in the binding ability of both models were noted during the study. The beta2-adrenergic-based A2A AR model was much more capable to stabilize the ligand in the binding site cavity than the corresponding rhodopsin-based A2A AR model, however, such differences were not so clear in case of A1 AR models. It was suggested that for the A1 AR it is possible to use the crystal structure of rhodopsin as a template as well as beta2-adrenergic receptor, but for A2A AR, with the now available beta2-adrenergic receptor X-ray structure, docking studies should be avoided on the rhodopsin-based model. However, taking into account that the beta2AR shares about 31% of the residues with the AR in comparison to 21% in case of bRho, we suggest using beta2-adrenergic-based models for the A1 and A2A ARs for further in silico ligand screening also because of their generally better ability to stabilize ligands inside the binding pocket.  相似文献   

12.
Multiplexing of GFP based and immunofluorescence translocation assays enables easy acquisition of multiple readouts from the same cell in a single assay run. Immunofluorescence assays monitor translocation, phosphorylation, and up/down regulation of endogenous proteins. GFP-based assays monitor translocation of stably expressed GFP-fusion proteins. Such assays may be multiplexed along (vertical), across (horizontal), and between (branch) signal pathways. Examples of these strategies are presented: 1) The MK2-GFP assay monitors translocation of MK2-GFP from the nucleus to the cytoplasm in response to stimulation of the p38 pathway. By applying different immunofluorescent assays to the MK2 assay, a multiplexed HCA system is created for deconvolution of p38 pathway activation including assay readouts for MK2, p38, NFkappaB, and c-Jun. 2) A method for evaluating GPCR activation and internalization in a single assay run has been established by multiplexing GFP-based internalization assays with immunofluorescence assays for downstream transducers of GPCR activity: pCREB (cAMP sensor), NFATc1 (Ca(2+) sensor), and ERK (G-protein activation). Activation of the AT1 receptor is given as an example. 3) Cell toxicity readouts can be linked to primary readouts of interest via acquisition of secondary parameters describing cellular morphology. This approach is used to flag cytotoxic compounds and deselect false positives. The ATF6 Redistribution assay is provided as an example. These multiplex strategies provide a unique opportunity to enhance HCA data quality and save time during drug discovery. From a single assay run, several assay readouts are obtained that help the user to deconvolute the mode of action of test compounds.  相似文献   

13.
The radical scavenging activity of the stable derivatives, which are O-substituted at the C-2 position of ascorbic acid (AA), against 1,1-diphenyl-2-picrylhydrazyl (DPPH) was evaluated in buffer under different pH conditions, and compared with those of AA and alpha-tocopherol. AA was shown to have 50% radical scavenging ability (EC50) at a concentration of 2.2 x 10(-5) M against 0.1 mM DPPH in 60% ethanol. Ascorbyl 6-palmitate, a lipophilic AA derivative which has a free endiol group and is therefore unstable, also showed potent radical scavenging activity with EC50 of 2.9 x 10(-5) M. A typical lipophilic antioxidant, alpha-tocopherol gave a similar EC50 value as that of AA. In contrast, ascorbyl 2,6-dipalmitate, AA 2-phosphate and AA 2-sulfate exhibited negligible scavenging activity. On the other hand, 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G) and a series of 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids (6-Acyl-AA-2G) themselves exhibited the radical scavenging activity of EC50: 6.1 x 10(-5) M and 4.4 x 10(-5)-5.9 x 10(-5) M, respectively, although their activities were lower than that of AA. Among 6-Acyl-AA-2G derivatives, the EC50 values tended to decrease with increasing length of their acyl carbon group. Increasing pH of the buffer resulted in decrease in the scavenging activity of all compounds tested as expected. We speculate that the difference in the radical scavenging activity of derivatives O-substituted at the C-2 position of AA may be ascribed to the linkage type of the substituent group to the endiol-lactone resonance system and the degree of dissociation of the C-3 proton.  相似文献   

14.
A simple chromatographic procedure with the use of modified cellulose-nitrate membrane strips, 80 x 40 mm, has been worked out for the rapid isotopic assay of cyclic AMP (cAMP) phosphodiesterase (EC 3.1.4.17) and 5'-AMP nucleotidase (EC 3.1.3.5) in crude extracts of various tissues from animals and plants. The assay is based on enzymatic conversion of the product to adenine, a relatively inert compound which, in contrast to cAMP and 5'-AMP, is strongly adsorbed by the cellulose-nitrate membrane. Due to this property rapid separation of adenine from the unconverted substrate (cAMP or 5'-AMP) is possible. Commercial 5'-nucleotidase and easily obtainable crude extract of adenosine nucleosidase from barley leaves are used as coupling enzymes for the phosphodiesterase assay. The assay of phosphodiesterase in 0.5-2 microliter of blood (10(-5) to 4.10(-5) units) has been demonstrated on several examples.  相似文献   

15.
G‐protein‐coupled receptors (GPCRs) exist in conformational equilibrium between active and inactive states, and the former population determines the efficacy of signaling. However, the conformational equilibrium of GPCRs in lipid bilayers is unknown owing to the low sensitivities of their NMR signals. To increase the signal intensities, a deuteration method was developed for GPCRs expressed in an insect cell/baculovirus expression system. The NMR sensitivities of the methionine methyl resonances from the β2‐adrenergic receptor (β2AR) in lipid bilayers of reconstituted high‐density lipoprotein (rHDL) increased by approximately 5‐fold upon deuteration. NMR analyses revealed that the exchange rates for the conformational equilibrium of β2AR in rHDLs were remarkably different from those measured in detergents. The timescales of GPCR signaling, calculated from the exchange rates, are faster than those of receptor tyrosine kinases and thus enable rapid neurotransmission and sensory perception.  相似文献   

16.
17.
Allosteric regulation promises to open up new therapeutic avenues by increasing drug specificity at G‐protein‐coupled receptors (GPCRs). However, drug discovery efforts are at present hampered by an inability to precisely control the allosteric site. Herein, we describe the design, synthesis, and testing of PhotoETP, a light‐activated positive allosteric modulator of the glucagon‐like peptide‐1 receptor (GLP‐1R), a class B GPCR involved in the maintenance of glucose homeostasis in humans. PhotoETP potentiates Ca2+, cAMP, and insulin responses to glucagon‐like peptide‐1 and its metabolites following illumination of cells with blue light. PhotoETP thus provides a blueprint for the production of small‐molecule class B GPCR allosteric photoswitches, and may represent a useful tool for understanding positive cooperativity at the GLP‐1R.  相似文献   

18.
The new β2 Adrenoceptor (β2AR) crystal structures provide a high-resolution snapshot of receptor interactions with two particular partial inverse agonists, (−)-carazolol and timolol. However, both experimental and computational studies of GPCR structure are significantly complicated by the existence of multiple conformational states coupled to ligand type and receptor activity. Agonists and antagonists induce or stabilize distinct changes in receptor structure that mediate a range of pharmacological activities. In this work, we (1) established that the existing β2AR crystallographic conformers can be extended to describe ligand/receptor interactions for additional antagonist types, (2) generated agonist-bound receptor conformations, and (3) validated these models for agonist and antagonist virtual ligand screening (VLS). Using a ligand directed refinement protocol, we derived a single agonist-bound receptor conformation that selectively retrieved a diverse set of full and partial β2AR agonists in VLS trials. Additionally, the impact of extracellular loop two conformation on VLS was assessed by docking studies with rhodopsin-based β2AR homology models, and loop-deleted receptor models. A general strategy for constructing and selecting agonist-bound receptor pocket conformations is presented, which may prove broadly useful in creating agonist and antagonist bound models for other GPCRs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and serve as primary targets of approximately one-third of currently marketed drugs. In particular, adenosine A1 receptor (A1AR) is an important therapeutic target for treating cardiac ischemia–reperfusion injuries, neuropathic pain, and renal diseases. As a prototypical GPCR, the A1AR is located within a phospholipid membrane bilayer and transmits cellular signals by changing between different conformational states. It is important to elucidate the lipid–protein interactions in order to understand the functional mechanism of GPCRs. Here, all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method were performed on both the inactive (antagonist bound) and active (agonist and G-protein bound) A1AR, which was embedded in a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid bilayer. In the GaMD simulations, the membrane lipids played a key role in stabilizing different conformational states of the A1AR. Our simulations further identified important regions of the receptor that interacted distinctly with the lipids in highly correlated manner. Activation of the A1AR led to differential dynamics in the upper and lower leaflets of the lipid bilayer. In summary, GaMD enhanced simulations have revealed strongly coupled dynamics of the GPCR and lipids that depend on the receptor activation state. © 2019 Wiley Periodicals, Inc.  相似文献   

20.
Xiao WL  Zhu HJ  Shen YH  Li RT  Li SH  Sun HD  Zheng YT  Wang RR  Lu Y  Wang C  Zheng QT 《Organic letters》2005,7(11):2145-2148
[structure: see text]. Lancifodilactone G (1), a novel, highly oxygenated nortriterpenoid featuring a partial enol structure and a spirocyclic moiety, was isolated from the medicinal plant Schisandra lancifolia. Its structure and stereochemistry were determined from extensive one- and two-dimensional NMR and mass spectral data, coupled with single-crystal X-ray analysis. Compound 1 exerted minimal cytotoxicity against C8166 cells (CC50 > 200 microg/mL) and showed anti-HIV activity with EC50 = 95.47 +/- 14.19 microg/mL and a selectivity index in the range of 1.82-2.46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号