首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A mercury-free thick-film graphite-containing electrode modified with formazan is proposed for determining manganese(II) by cathodic stripping voltammetry. The detection limit for manganese(II) found with this electrode is 0.04 µg/L at a preconcentration time of 60 s. The analytical signal from manganese(II) is a linear function of its concentration in the range 0.1 to 30 µg/L. The results of determining manganese in natural and drinking waters are presented.Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 2, 2005, pp. 187–192.Original Russian Text Copyright © 2005 by Stozhko, Inzhevatova, Kolyadina, Lipunova.This revised version was published online in April 2005 with corrections to the author names and book review format.  相似文献   

2.
A thick-film graphite-containing electrode modified with calomel was proposed for determining iron(III) by stripping voltammetry. Of the organic reagents under study, pyrocatechol was found to be the most sensitive in determining iron(III). The detection limit for iron(III) was 3.6 × 10−10 M (0.02 µg/L) at a preconcentration time of 30 s. The analytical signal from iron(III) was a linear function of its concentration in the range from 0.05 to 5 µg/L. A procedure for determining total iron in drinking and natural water was developed and certified.__________Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 7, 2005, pp. 747–752.Original Russian Text Copyright © 2005 by Stozhko, Inzhevatova, Kolyadina.  相似文献   

3.
Summary A new preconcentration and voltammetric determination method for cobalt(II) in aqueous solution with a chemically modified electrode is proposed. The accumulation behaviour and voltammetry of cobalt(II) has been investigated with a carbon paste electrode modified with cationexchanger and 1,10-phenanthroline. The electrochemical response is characterized with respect to carbon paste composition, pH, preconcentration time, cobalt(II) concentration and other variables. For a 3-min preconcentration time, the electrode gives good linearity for 1×10–7 to 4×10–6 mol/l Co(II), a detection limit of 8×10–8 mol/l. The response can be reproduced with a 4.0% relative standard deviation. The method is fairly free from many coexisting ions interferences. A rapid and convenient renewal procedure allows the use of a single electrode in multiple analytical determinations over several days. Satisfactory results are obtained for the determination of cobalt in a variety of certified standard reference materials.  相似文献   

4.
This work reports the determination of trace Co(II) by adsorptive stripping voltammetry on disposable three-electrode cells with on-chip metal-film electrodes. The heart of the sensors was a bismuth-film electrode (BiFE) with Ag and Pt planar strips serving as the reference and counter electrodes, respectively. Metals were deposited on a silicon chip by sputtering while the areas of the electrodes were patterned via a metal mask. Co(II) was determined by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3σ limit of detection was 0.09 μg l−1 of Co(II) (for 90 s of preconcentration) and the relative standard deviation for Co(II) was 3.8% at the 2 μg l−1 level (n = 8). The method was applied to the determination of Co(II) in a certified river water sample. These mercury-free electrochemical devices present increased scope for field analysis and μ-TAS applications.  相似文献   

5.
An electrocatalytic method has been proposed for determining dithiocarbamate-based pesticides (carbathion, nabam, ferbam, thiram, and thiuram) using a carbon-paste electrode modified with iron(II) and cobalt(II) phthalocyanines. The first wave of carbathion oxidation in both aqueous and organic solutions does not change compared to an unmodified carbon-paste electrode; for the second stage of oxidation, a decrease by 100 mV in the overpotential and a significant increase in the current are observed. The electrochemical signal is observed in the range of potentials characteristic for the oxidation of metal phthalocyanines, and the metal phthalocyanine serves as the electron carrier. A similar effect is observed for the electrochemical oxidation of nabam. The catalytic activity of the metal phthalocyanines to ferbam, thiram, and thiuram in acetone has been determined. In the case of the electrochemical oxidation of ziram and zineb, the electrocatalytic effect is not observed. The dependence of the peak current on the pesticide concentration is linear within the range from 1 × 10–3to 1 × 10–7M. The adsorption preconcentration of pesticides decreases the limit of detection by an order of magnitude.  相似文献   

6.
A new chemically modified electrode (CME), -benzoinoxime (CUPRON) modified carbon paste electrode, for determining copper(II) is reported because of its excellent selectivity and sensitivity. The electrode is made by mixing a quantity of CUPRON (25%, w/w) with graphite powder (50%, w/w) and paraffin oil (25%, w/w). The CME preferentially deposits copper from the pH 8.5 NH3-NH4Cl buffer solution containing copper(II) under an open circuit and most of metal ions do not interfere with the measurements. The detection limit (S/N of three) for determining Cu(II) is 3 × 10–10 g/ml after 10 min accumulation in fast linear scan stripping voltammetric measurement. Linear calibration curves are obtained for Cu(II) concentration ranged from 1 × 10–8 M to 1 × 10–6 M. The response can be maintained with relative standard deviation of 6.0% in a 5 × 10–6 M Cu(II) solution after eight accumulation/measurement/ regeneration cycles at the same electrode surface. The effect resulted from carbon paste preparation, reduction potential, electrode renewal, electrolyte and solution pH, preconcentration time, concentration dependence, possible interference and other variables has been evaluated. As for application, the CME demonstrates its high sensitivity and copper-selectivity in complex composition samples, such as anodic mud and polluted water.  相似文献   

7.
An electrochemical preconcentration at a controlled potential on the electrode in a flow-through mode followed by graphite furnace atomic absorption spectrometric (GFAAS) detection is proposed for determination of trace amounts of palladium. After electrolysis the polarization of the electrodes was changed and deposited metal was dissolved electrochemically in the presence of an appropriate stripping reagent. Conditions for the electrodeposition, such as pH of the solutions, a deposition potential, dissolution potential and a composition of stripping solution were optimised. The graphite electrode (GE) and glassy carbon electrode (GCE) were tested for the palladium reduction process. The detection limit of 0.05 ng ml−1 Pd (1 pg) was obtained after palladium preconcentration on the GCE and dissolution with 0.2 mol l−1 thiourea in 0.1 mol l−1 HCl followed by GFAAS detection. The method was applied for the determination of palladium in spiked tap water and road dust samples.  相似文献   

8.
A mercury-free modified screen-printed electrode was proposed for the preconcentration and determination of Cu(II), Pb(II), Cd(II), and Zn(II). The simplicity of design, compactness, and low cost of the developed electrode; the possibility of using it as a disposable electrode; and no need in any operations on the mechanical treatment of the electrode surface make this electrode a candidate for portable transducers in flow and discrete analyses.  相似文献   

9.
Li D  Jia J  Wang J 《Talanta》2010,83(2):332-336
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L−1 for Cd(II) and 0.02 μg L−1 for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples.  相似文献   

10.
The paper presents the preconcentration of trace elements via electrodeposition onto a (micro)aluminum cathode in the presence of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] as a supporting electrolyte. The advantages of the proposed method include very simple instrumentation for the preconcentration of trace elements and low-cost reagents. The experiment showed that the use of ionic liquid in the electrodeposition process significantly improves sensitivity, recovery and detection limits for the determination of trace amounts of iron, cobalt, nickel and zinc. The preconcentrated metals were determined using X-ray fluorescence spectrometry. The optimum parameters for electrodeposition such as pH, the volume of the analyzed solution, the voltage and the deposition time were studied. Under the optimized conditions, the detection limits were 5, 2, 3 and 6 μg L 1 for iron, cobalt, nickel and zinc, respectively. The precision and recovery of the method were in the range of 3–5.5%, and 92–103%, respectively. The calibration was performed using aqueous standards of Fe(III), Co(II), Ni(II) and Zn(II) in the range 0.01–0.25 mg L 1. The method was applied successfully in water analysis.  相似文献   

11.
This works reports the use of square-wave adsorptive stripping voltammetry (SWAdSV) for the simultaneous determination of Ni(II) and Co(II) on a rotating-disc bismuth-film electrode (BFE). The metal ions in the non-deoxygenated sample were complexed with dimethylglyoxime (DMG) and the complexes were accumulated by adsorption on the surface of the BFE. The stripping step was carried out by using a square-wave potential-time voltammetric excitation signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements. The experimental variables (choice of the working electrode substrate, the presence of oxygen, the DMG concentration, the buffer concentration, the preconcentration potential, the accumulation time, the rotation speed and the SW parameters) as well as potential interferences were investigated and the figures of merit of the methods were established. Using the selected conditions, the 3σ limits of detection were 70 ng l−1 for Co(II) and 100 ng l−1 for Ni(II) (for 300 s of preconcentration) and the relative standard deviations were 2.3% for Co(II) and 3.9% for Ni(II) at the 2 μg l−1 level (n = 8). Finally, the method was applied to the determination of nickel and cobalt in real samples with satisfactory results.  相似文献   

12.
《Analytical letters》2012,45(5):905-918
ABSTRACT

A new method is described for the determination of cobalt based on the square wave adsorptive stripping voltammetry of Co(II) complexed with hydroxynaphthol blue (HNB) at the static mercury drop electrode. Optimal conditions were found to be: preconcentration potential, -0.500V vs. Ag/AgCl (KCl 3M); preconcentration time, 30 s (with stirring); pulse height, 50 mV; frequency, 100 Hz; scan increment, 4 mV; step time, 0.010 s; supporting electrolyte, HEPES/HCl (0.1 M, pH 7.0-8.0) or triethanolamine/HCl (0.1 M, pH 7.6); concentration of hydroxynaphthol blue, 5.0 × 10?6 M. The response of the system was found to be linear in a range of Co(II) concentrations from 2.0 to 10.0 μg/L. The limit of detection was found to be 1.8 × 10?9 M with 2 minutes of preconcentration time. The effect of various potential interferences were also studied including a variety of cations, anions and organic surfactants. The interferences by Ni(II), and Cr(VI) may be eliminated by addition of EDTA or CDTA and the of Fe(III) and Ti(IV) by fluoride. The merits of the procedure were demonstrated in the analysis of certified and biological samples.  相似文献   

13.
A procedure is developed for the immobilization of bismuth nanoparticles prepared by the method of gas condensation on inert supports manufactured by the screen printing method using carbon-containing inks. The electrochemical behavior of the immobilized bismuth nanoparticles is investigated, and the conditions of their electrochemical activation are found. The composition of the modifying suspension “bismuth nanoparticles-liquid” is optimized. The elaborated thick-film carbon-containing electrode modified by bismuth nanoparticles is shown to be similar in its analytical parameters to the commercially available thick-film carbon-containing electrode premodified by calomel, and substantially exceeds carbon-containing electrodes with electrolytically deposited bismuth films in its properties. The limits of detection for heavy metals by stripping voltammetry are as follows (μg/L): 0.38 for Zn(II), 0.40 for Cd(II), and 0.55 for Pb(II) at the preconcentration time 180 s.  相似文献   

14.
A high preconcentration method by liquid–liquid extraction using liquid surfactant membranes was developed. The water-in-oil (w/o) emulsion containing dilute hydrochloric acid, 2-ethylhexyl hydrogen 2-ethylhexylphosphonate (PC-88A), liquid paraffin, and kerosene was used for the extraction. In a resulting volume of 1000 cm3 of an aqueous sample solution (pH 5.0) containing less than 1 mg of each metal ion, 2 cm3 of w/o emulsion droplets coated with sorbitan monooleate were dispersed. The analyte metal ions in the outer bulk aqueous phase were extracted into the organic phase to form a complex with PC-88A and successively back-extracted into the inner aqueous phase. The analytes in the resulting inner aqueous phase were determined subsequently by graphite furnace atomic absorption spectrometry applied as a detector. By this procedure, concentration factors of 570, 820, 750, 970, 860, and 880 were achieved for chromium(III), manganese(II), cobalt(II), nickel(II), copper(II), and cadmium(II), respectively, and also the respective detection limits (3σ) of 0.4, 20, 1.2, 18, 18, and 0.7 pg cm−3 were obtained.  相似文献   

15.
The analytical properties of the cathodic peak of tin(II) reduction and the anodic peak of iron(II) oxidation on a graphite electrode were studied with the electrode surface mechanically renewed directly in a solution before applying a potential in each measurement. The influence of the organic components of the phenolsulfonic tin-plating electrolyte on the cathodic current of tin(II) reduction and anodic current of iron(II) oxidation was studied. A dc voltammetric method was proposed for determining tin(II) directly in the phenolsulfonic tin-plating electrolyte, and iron(II) after the electrolyte is diluted tenfold with a 0.5M H2SO4 supporting solution.  相似文献   

16.
A novel silsesquioxane and cobalt nitroprusside compound was prepared from octa(aminopropyl)silsesquioxane, resulting in a nanocomposite (ACCoN), which was then characterized by different spectroscopic techniques. The cyclic voltammograms of the ACCoN-modified graphite paste electrode indicated a redox pair with a formal potential (Eθ′)=0.38 V, assigned to the Co(II)Fe(II)(CN)5NO/Co(II)Fe(III)(CN)5NO redox couple. The ACCoN-modified graphite paste electrode was sensitive to isoniazid concentrations, presenting a linear response at a concentration range from 6.0×10−7 to 1.0×10−5 mol L−1, with limit of detection and amperometric sensitivity of 5.53×10−7 mol L−1 and 0.17 A/mol L−1, respectively.  相似文献   

17.
A batch pertraction (liquid membrane extraction, MX) of cobalt has been studied, with industrial reagent LIX 64N and ABF (USSR) as a carrier. The influence of cobalt, reagents and acid concentration has been searched. The kinetic and hydrodynamic characteristics of the emulsion were optimized. In one batch pertraction process it is possible to reach 100-fold cobalt preconcentration with 93–98% yield from 1 dm3 sample volume.  相似文献   

18.
The voltammetric behaviour of selenium(IV) was studied at platinum and gold electrodes in sulphuric acid, perchloric acid and potassium chloride media as a basis for its voltammetric detection. The best voltammetric behaviour was recorded at gold electrodes with perchloric acid as the supporting electrolyte. The concomitant presence of metals, such as copper or lead, and of model biomolecules, such as bovine serum albumin, in the solution resulted in a deterioration of the electrochemical response for selenium(IV). Quantitative detection of selenium(IV) by square wave anodic stripping voltammetry at both a millimetre-sized gold disc electrode and a microband electrode array revealed linear responses to selenium concentration in the ranges 5–15 μM and 0.1–10 μM, respectively, with 60 s preconcentration. The sensitivities were 6.4 μA μM−1 cm−2 and 100 μA μM−1 cm−2 at the disc and the microband array, respectively. The detection limit at the microband electrode array was 25 nM, illustrating the potentiality of such microelectrodes for the development of mercury-free analytical methods for the trace detection of selenium(IV).  相似文献   

19.
An azamacrocyclic compound (1,4,8,11-tetraazacyclotetradecane, cyclam), which forms strong chelate complexes with metal ions such as Mn(II) and Fe(II), is tested as an electrolyte additive to suppress metal deposition. The tetradentate cyclic ligand is electrochemically stable within the working voltage of lithium-ion batteries (0.0–4.5 V vs. Li/Li+), hence it is practicable as an electrolyte additive. Deposition of Mn on a graphite electrode, which is severe when a Li/graphite cell is cycled in a Mn(II)-containing electrolyte solution, is greatly suppressed by adding cyclam. Our elemental analysis reveals negligible Mn deposits on a graphite electrode indicating the beneficial role of cyclam. The suppression of metal deposition is further indicated by the absence of an internal short between Li metal and lithium cobalt oxide positive electrode.  相似文献   

20.
A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0 × 10−4 and 6.0 × 10−4 μmol L−1 for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号