首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic performance of Enteromorpha linza (L.) J. Agardh-Chlorophyceae was determined with a portable PAM instrument in situ and under seminatural radiation conditions in Patagonia, Argentina. Solar radiation was measured in parallel with a three-channel radiometer, ELDONET (Real Time Computer, M?hrendorf, Germany), in three wavelength ranges, UV-B (280-315 nm), UV-A (315-400 nm), and PAR (400-700 nm). The effective photosynthetic quantum yield decreased after 15-min exposure to solar radiation when the thalli were kept in a fixed position but recovered in the subsequent shade conditions within several hours. A 30-min exposure of free floating thalli, however, caused less photoinhibition. The photosynthetic quantum yield of E. linza was also followed over whole days under clear sky, partly cloudy and rainy conditions in a large reservoir of water (free floating thalli) and in situ (thalli growing in rock pools). Most of the observed effect was due to visible radiation; however, the UV wavelength range, and especially UV-B, caused a significant reduction of the photosynthetic quantum yield. Fluence rate response curves indicated that the species is a typical shade plant which showed non-photochemical quenching at intermediate and higher irradiances. This is a surprising result since these algae are found in the upper eulittoral where they are exposed to high irradiances. Obviously they utilize light only during periods of low irradiances (morning, evening, high tide) while they shut down the electron transport chain during intensive exposure. Fast induction and relaxation kinetics have been measured in these algae for the first time and indicated a rapid adaptation of the photosynthetic capacity to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. There was a strong bleaching of chlorophyll due to exposure to solar radiation but less drastic bleaching of carotenoids.  相似文献   

2.
The photocatalytic degradation of chlorophenols was evaluated under direct solar radiation using commercial ZnO catalyst. Effects of several parameters such as a catalyst loading, pH of solution and initial concentration on the degradation process have been investigated. The photocatalytic degradation efficiency of chlorophenols at the optimum value of the parameters was compared under similar experimental conditions. The results of efficiency and mineralization showed the degradation of 2-chlorophenol and 2,4-dichlorophenol compound with the first order kinetic rate and the rate constant decreases as the initial concentration of the chlorophenols increase. However, the rate constant was strongly affected by type of chlorophenols compound present either 2-chlorophenol or 2,4-dichlorophenol. The highest removal of chlorophenols was obtained after 120 min and the final intermediate compounds of chlorophenols degradation are lower molecular weight compound consisting of acetic acid which was analyzed through the HPLC.  相似文献   

3.
The role of solar UV radiation in the ecology of alpine lakes.   总被引:10,自引:0,他引:10  
Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.  相似文献   

4.
Seasonal changes in diffuse ultraviolet (UV) and visible light attenuations and inherent optical properties in the lake water were monitored at the pelagic and littoral shallow zones of Lake Biwa which features a broad range of optical conditions within a single large water body. We considered the absorption factors that affect UV attenuation, and clarified the contribution of the absorption of suspended particles and chromophoric dissolved organic matter (CDOM) by multiple regression analyses of the monitoring data. The variability of UV attenuations in the lake demonstrated a strong contrast between the pelagic and the shallow zones. The latter were characterized by turbid systems supplying suspended matter as well as CDOM, whereas the former was far from the turbid systems in the littoral zone or the lake bottom. In this lake, the regulation of UV and light attenuations is rendered competitive by the absorption of suspended particles and CDOM in the lake water, hence, the UV penetration has both spatial and temporal variability based on changes in the physical and biological condition of the lake.  相似文献   

5.
A detailed theoretical and experimental study of the dependence of fluorescence correlation measurements on optical excitation power due to optical saturation effects is presented. It is shown that the sensitivity of a fluorescence correlation measurement on excitation power becomes increasingly stronger for decreasing excitation power. This makes exact measurements or diffusion coefficients with fluorescence correlation spectroscopy rather difficult. A strong difference of this behavior for continuous-wave and pulsed excitation is found.  相似文献   

6.
The entomopathogenic hyphomycete Metarhizium anisopliae has been used in programs of agricultural pest and disease vector control in several countries. Exposure to simulated solar radiation for a few hours can completely inactivate the conidia of the fungus. In the present study we determined the effect of exposures to full-spectrum sunlight and to solar ultraviolet A radiation at 320-400 nm (UVA) on the conidial culturability and germination of three M. anisopliae strains. The exposures were performed in July and August 2000 in Logan, UT. The strains showed wide variation in tolerance when exposed to full-spectrum sunlight as well as to UVA sunlight. Four-hour exposures to full-spectrum sunlight reduced the relative culturability by approximately 30% for strain ARSEF 324 and by 100% for strains ARSEF 23 and 2575. The relative UV sensitivity of the two more sensitive strains was different under solar UV from that under ultraviolet B radiation at 280-320 nm (UVB) in the laboratory. Four-hour exposures to solar UVA reduced the relative culturability by 10% for strain ARSEF 324, 40% for strain ARSEF 23 and 60% for strain ARSEF 2575. Exposures to both full-spectrum sunlight and UVA sunlight delayed the germination of the surviving conidia of all three strains. These results, in addition to confirming the deleterious effects of UVB, clearly demonstrate the negative effects of UVA sunlight on the survival and germination of M. anisopliae conidia under natural conditions. The negative effects of UVA in sunlight also emphasize that the biological spectral weighting functions for this fungus must not neglect the UVA wavelengths.  相似文献   

7.
Solar UV radiation (280-400 nm) may affect morphology of cyanobacteria, however, little has been evidenced on this aspect while their physiological responses were examined. We investigated the impacts of solar PAR and UVR on the growth, photosynthetic performance and morphology of the cyanobacterium Anabaena sp. PCC7120 while it was grown under three different solar radiation treatments: exposures to (a) constant low PAR (photosynthetic active radiation, 400-700 nm), (b) natural levels of solar radiation with and (c) without UV radiation (290-400 nm). When the cells were exposed to solar PAR or PAR+UVR, the photochemical efficiency was reduced by about 40% and 90%, respectively, on day one and recovered faster under the treatment without UVR over the following days. Solar UVR inhibited the growth up to 40%, reduced trichome length by up to 49% and depressed the differentiation of heterocysts. Negligible concentrations of UV-absorbing compounds were found even in the presence of UVR. During the first 2 d of exposure to natural levels of PAR, carotenoid concentrations increased but no prolonged increase was evident. Heterocyst formation was enhanced under elevated PAR levels that stimulated quantum yield and growth after an initial inhibition. Higher concentrations of carotenoids and a twofold increase in the carotenoid to chlorophyll a ratio provided protection from the high levels of solar PAR. Under radiation treatments with UVR the relatively greater decrease in chlorophyll a concentrations compared with the increase in carotenoids was responsible for the higher carotenoid: chlorophyll a ratio. Heterocyst formation was disrupted in the presence of solar UVR. However, the longer term impact of heterocyst disruption to the survival of Anabaena sp. requires further study.  相似文献   

8.
The effects of supplemental UV-B radiation on Taxus chinensis var. mairei were studied. Leaf traits, gas exchange parameters and the concentrations of photosynthetic pigments, cellular defense system products, secondary metabolites and ultrastructure were determined. UV-B radiation significantly decreased leaf area (p < 0.05). Leaf number, secondary branch number, leaf weight per plant and leaf moisture all increased dramatically (p < 0.05). Neither the leaf weight nor the specific leaf weight (SLW) exhibited significant differences between ambient and enhanced UV-B radiation. Gas exchange parameters were all dramatically reduced by enhanced UV-B radiation (p < 0.05). The contents of chlorophyll and the chlorophyll a/b ratio were not distinctly affected by UV-B radiation, while carotenoids content significantly decreased (p < 0.05). Supplemental UV-B treatment induced significant flavonoid accumulation (p < 0.05), which was able to protect plant from radiation damage. Meanwhile, the appendage content, abaxial stomatal density, papilla density and particulate matter content in substomatic chambers increased noticeably by supplemental UV-B radiation, whereas the aperture size of single stomata was diminished. The number and area of plastoglobuli were apparently reduced by UV-B radiation, but stroma and grana lamellae were not destroyed. Our results demonstrated that T. chinensis var. mairei can activate several defense mechanisms against oxidative stress injury caused by supplemental UV-B radiation.  相似文献   

9.
Light, oxygen or voltage (LOV) domains function as blue-light sensors in the phototropin family of photoreceptors found in plants, algae and bacteria. We detected putative LOV domains (Alr3170-LOV, All2875-LOV and Alr1229-LOV) in the genome of a filamentous cyanobacterium, Anabaena sp. PCC 7120. These cyanobacterial LOV domains are closely clustered with the known LOV domains. Alr3170-LOV and A112875-LOV carry the conserved cysteine residue unique to the photoactive LOV, whereas Alr1229-LOV does not. We expressed these three LOV domains in Escherichia coli and purified them. In fact, Alr3170-LOV and A112875-LOV that are conserved in Nostoc punctiforme, a related species, bound flavin mononucleotide and showed spectral changes unique to known LOV domains on illumination with blue light. Alr3170-LOV was completely photoreduced and dark reversion was slow, whereas A112875-LOV was slowly photoreduced and dark reversion was rapid. For comparison, AvA112875-LOV in a closely related A. variabilis was also studied as a homolog of A112875-LOV. Finally, we observed that Alr1229-LOV that is not conserved in N. punctiforme showed no flavin binding.  相似文献   

10.
Natural marine phytoplankton assemblages from Bahía Bustamante (Chubut, Argentina, 45 degrees S, 66.5 degrees W), mainly consisting of cells in the picoplankton size range (0.2-2 microm), were exposed to various UVBR (280-315 nm) and UVAR (315-400 nm) regimes in order to follow wavelength-dependent patterns of cyclobutane pyrimidine dimer (CPD) induction and repair. Simultaneously, UVR induced photosynthetic inhibition was studied in radiocarbon incorporation experiments. Biological weighting functions (BWFs) for photoinhibition and for CPD induction, the latter measured in bare calf thymus DNA, differed in the UVAR region: carbon incorporation was reduced markedly due to UVAR, whereas no measurable UVAR effect was found on CPD formation. In contrast, BWFs for inhibition of photosynthesis and CPD accumulation were fairly similar in the UVBR region, especially above 300 nm. Incubation of phytoplankton under full solar radiation caused rapid CPD accumulation over the day, giving maximum damage levels exceeding 500 CPD MB(-1) at the end of the afternoon. A clear daily pattern of CPD accumulation was found, in keeping with the DNA effective dose measured by a DNA dosimeter. In contrast, UVBR induced photosynthetic inhibition was not dose related and remained nearly constant during the day. Screening of UVBR or UVR did not cause significant CPD removal, indicating that photoreactivation either by PAR or UVAR was of minor importance in these organisms. High CPD levels were found in situ early in the morning, which remained unaffected notwithstanding treatments favoring photorepair. These results imply that a proportion of cells had been killed by UVBR exposure prior to the treatments. Our data suggest that the limited potential for photoreactivation in picophytoplankton assemblages from the southern Atlantic Ocean causes high CPD accumulation as a result of UVBR exposure.  相似文献   

11.
Weber TP  Stilianakis NI 《Photochemistry and photobiology》2008,84(6):1601-2; author reply 1603-4
We critically investigate the claim put forward by Sagripanti and Lytle ([2007] Photochem. Photobiol. 83, 1278-1282) that inactivation of influenza A virus by solar radiation can explain the seasonality of influenza epidemics. We correct an error in the Sagripanti and Lytle paper and show that changes in relative humidity and temperature affect influenza virus inactivation as strongly as variation in solar radiation. Furthermore, it appears unlikely that transmission in outdoor settings plays an important role during influenza outbreaks, because influenza A virus is sensitive to a wide range of environmental factors.  相似文献   

12.
p53 is a tumor suppressor gene and mutation of p53 is a frequent event in skin cancer. The wild-type p53 encodes for a 53-kD phosphoprotein that plays a pivotal role in regulating cell growth and cell death. The wt-p53 gene is also called "guardian of the genome", for its role in preventing the accumulation of genetic alterations, observed in cancer cells. The wild-type p53 protein plays a central role in the response of the cell to DNA damage. UV, present in sunlight, is one of the most ubiquitously present DNA damage inducing stress conditions to which skin cells are exposed. The wt-p53 protein accumulates in human skin cells in vitro and in human skin in vivo upon UV irradiation. This upregulation mounts a protective response against permanent DNA damage through transactivation of either cell cycle arrest genes and DNA repair genes or genes that mediate the apoptotic response. The molecular events which regulate the activity of the wt-p53 protein activity are only beginning to be described.  相似文献   

13.
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor- (IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), Phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded.  相似文献   

14.
The risk to outdoor workers of exposure to solar ultraviolet radiation (UVR) has been known for some time, particularly in the building and construction industry, where workers often use little in the way of protection against solar UVR. In recent years there have been attempts by authorities in Australia and in Queensland in particular, where UVR levels in spring and summer are very high to extreme, to instigate and to encourage the use of personal UVR protection by outdoor workers. To quantify UVR exposure of building and construction industry workers involved in typical outdoor work, a study was conducted using UVR-sensitive polysulphone film badges. The results indicated that the doses were significant, often well in excess of recommended exposure limits. The measured exposures varied between trades. Data on the use of personal UVR-protective equipment and the skin type of workers were also collected. Many of the workers had skin types that were sensitive to UVR and showed signs of sunburn. In summary, the study found that at-risk individuals were exposed to extreme levels of UVR, in most cases without adequate and appropriate sun protection.  相似文献   

15.
The properties of two forms of polyaniline (PAni) synthesised under acidic and basic conditions have been investigated both individually and as combined complexes. The PAni polymerised within alkaline media was redox inactive and non-conducting while the PAni emeraldine salt (ES) was electroactive and conducting. Raman, electron spin resonance, UV-Vis and fluorescence spectroscopies were used to monitor the changes in electronic properties of these conducting polymer composites. Solution cast films of alkaline synthesised (A-PAni) with the PAni ES resulted in an increase in the high spin polaron population suggesting that it acts as a pseudodopant. The ability of the A-PAni to increase and maintain the population of the polaron charge carrier was confirmed by UV-vis and Raman spectroscopy. Significantly, the presence of the A-PAni in PAni ES helped to sustain higher electrical conductivities at loading levels that were well below the percolation threshold of an insulating polystyrene sulfonate polymeric oligomer model. Fluorescence studies indicated that the A-PAni was fluorescent. However, mixtures of A-PAni with the PAni ES resulted in quenching of the A-PAni emission. The quenching process was observed to involve both static and dynamic processes, with the static quenching being dominant. These results suggest that the two polymers are strongly associated with each other when in the solid state. In stark contrast, the alkaline synthesized PAni did not influence the electrochemical properties of the emeraldine salt. These results deviate significantly from the expected outcome of the addition of an insulating A-PAni additive and highlight the unusual interactions occurring between PAni and its alkaline analogue.  相似文献   

16.
A new metabolite,named seimatoric acid(1),representing a new oxobutanoic acid derivative has been isolated from Seimatosporium sp., in addition to four known compounds viz.,2-hydroxymethyl-4β,5α,6β-trihydroxycyclohex-2-enone(2),(-)-phyllostine(3),(+)-epiepoxydon(4) and(+)-epoxydon monoacetate(5).Similarly one new benzoic acid derivative,named colletonoic acid(6) was isolated from the ethyl acetate fraction of Colletotrichum sp.The structures of the new compounds were elucidated by detailed ~1 H NMR,~(13)C NMR,COSY,HMQC.HMBC spectroscopic analysis,and HR-E1-MS.Seimatoric acid(1)was also isolated from another taxonomical unidentified fungal strain 4295 in ourgroup.The structures of the known compounds were elucidated by their spectral data comparison to literature data.Preliminary studies showed that colletonoic acid(6) showed good antibacterial,antifungal,and antialgal activities.  相似文献   

17.
The main objective of the present study is to specify the chemical properties of individual rain droplets. For this purpose, we have combined the collodion replication method and the SR-XRF microprobe technique. The dry residual materials retained in a single rain droplet, which correspond to the former cloud condensation nuclei and the scavenged particles during droplet falling, were successively reconstructed by the multiple elemental maps using SR-XRF microprobe analytical system. Also the SR-XRF microprobe system allows us to quantify the masses of ultra trace elements in residues of individual rain droplet with fg level. The proposed combination method in the present study is found to be helpful to understand the physicochemical properties of individual rain droplets.  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - Microalgae when subjected to nutrient restriction conditions, inducing environmental stress, are prone to total lipid accumulation and changes in the...  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - The solar collector (reflector and receiver) is the primary device being used in the concentrating solar power technologies for tapping the solar...  相似文献   

20.
Humans undertake their daily activities in a number of different postures. This paper aims to compare the anatomical distribution of the solar erythemal UV to human legs for standing and sitting postures. The exposure ratios to the legs (ratio of the UV exposure to a particular anatomical site compared to the ambient) have been measured with UV dosimeters for standing and sitting postures of a manikin. The exposure ratios for the legs ranged from 0 to 0.75 for the different anatomical sites for the sitting posture in summer (December through February) compared to 0.14 to 0.39 for the standing posture. In winter (June through August) the exposure ratios ranged from 0.01 to 0.91 for sitting to 0.17 to 0.81 for standing. For the anterior thigh and shin, the erythemal UV exposures increased by a factor of approximately 3 for sitting compared to standing postures. The exposure ratios to specific anatomical sites have been multiplied by the ambient erythemal UV exposures for each day to calculate the annual exposures. The annual erythemal exposures to the anterior thigh and ankle were predicted to be higher than 800 MED for humans sitting outdoors each day between noon and 13:00 h Australian Eastern Standard Time (EST). For humans standing outdoors during this time, the annual erythemal UV exposure averaged over each leg site was 436 MED, whereas, the averaged annual erythemal UV exposure was 512 MED for the sitting posture. Similarly, the annual erythemal UV exposure averaged over each of the sites was 173 MED for humans standing outdoors between 09:00 h EST and noon each Saturday morning and 205 MED for humans sitting outdoors during this time. These results show that there is increased risk of non-melanoma skin cancer and malignant melanoma to the lower body if no UV preventative strategies are employed while in a sitting posture compared to a standing posture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号