首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel linear polymer/dendrimer block copolymers, poly(2-methyl-2-oxazoline)-block-poly(amido amine) dendrimers (water-soluble full-generation type 4 (G = 4.0 and 5.0) and amphiphilic half-generation type 5 (G = 3.5, 4.5, and 5.5)), were synthesized by divergent-growth dendrimer construction with ω-ethylenediamine-terminated poly(2-methyl-2-oxazoline), which was prepared by living ring-opening polymerization of 2-methyl-2-oxazoline. Assembly of the amphiphilic dendrimer-based block copolymer (G = 5.5) was investigated by surface tension measurements (critical micelle concentration, 0.49 wt.-%) and by small-angle neutron scattering analysis (spherical particles; assembled number, ca. 103).  相似文献   

2.
A combination of different types of cationic ring-opening polymerizations (CROPs) has been used to construct macromolecular structures containing polymer segments with different physicochemical properties. The cyclic monomers used are tetrahydrofuran (THF), N-tert-butyl aziridine (TBA), 2-methyl-1, 3-oxazoline (MeOX) and 1, 3-dioxolane (DXL). The macromolecular structures include different block and graft copolymers, telechelics and macromonomers, star- and comb-shaped polymers, polymer networks and interpenetrating polymer networks (IPNs).  相似文献   

3.
《Thermochimica Acta》1991,184(2):183-191
The thermal degradation of a series of 18 copolymers corresponding to poly(p-methoxy-phenylmaleimide-co-2-methyl-2-oxazoline), poly(p-methoxyphenylmaleimide-co-2-ethyl-2-oxazoline), poly(p-nitrophenylmaleimide-co-2-methyl-2-oxazoline) and poly(p-nitrophenyl-maleimide-co-2-ethyl-2-oxazoline) has been invesugated using thermogravimetry in the temperature range 20–500 ° C. All the copolymers degrade in one step. The kinetic parameters Ea, n and A have been calculated. The thermal stability depends on the copolymer composition.  相似文献   

4.
Poly[styrene (ST)-tetrahydrofuran (THF)-2-methyl-2-oxazoline(MeOz)] triblock and graft copolymers were prepared by ionic polymerizations. Poly(ST-THF) graft copolymers were synthesized by coupling of ST-4-vinylpyridine (4VP) copolymer with a large excess of PTHF dication. The ion coupling of PST dianion with PTHF dication was accompanied by the side reaction (abstraction of α proton of oxonium ion). After tosylation of terminal hydroxyl groups of PTHF blocks, cationic copolymerizations of MeOz with poly(ST-THF) block and graft copolymers were carried out, and characteristics of produced copolymers were investigated in some detail.  相似文献   

5.
Water-soluble A-B block copolymers of 2-perfluoroethyl-2-oxazoline or 2-pentyl-2-oxazoline as hydrophobic monomers and 2-methyl-2-oxazoline as hydrophilic monomer were prepared by means of the living cationic ring-opening polymerization. The polymerization was initiated with N-methyl-2-(1-naphthyl)-2-oxazolinium trifluoromethanesulfonate as fluorescence label followed by sequential addition of the hydrophobic and the hydrophilic monomer. The polymerization was monitored by 1H NMR spectroscopy and gel permeation chromatography (GPC) measurements. The results revealed that fluorophilic block copolymers can be prepared by this method while lipohilic block copolymers are not accessible by this monomer sequence. Micelle formation of the fluorophilic block copolymers in aqueous solution was studied by means of steady-state fluorescence spectroscopy which confirmed strong intermolecular excimer formation of the terminal bounded naphthalene moiety. In chloroform as a good solvent for both blocks, only monomer fluorescence could be observed.  相似文献   

6.
This review focuses on poly(2-oxazoline) containing triblock copolymers and their applications. A detailed overview of the synthetic techniques is provided. Triblock copolymers solely based on poly(2-oxazoline)s can be synthesized by sequential monomer addition utilizing mono- as well as bifunctional initiators for the cationic ring-opening polymerization of 2-oxazolines. Crossover and coupling techniques enable access to triblock copolymers comprising, e.g., polyesters, poly(dimethylsiloxane)s, or polyacrylates in combination with poly(2-oxazoline) based segments. Besides systematic studies to develop structure property relationships, these polymers have been applied, e.g., in drug delivery, as (functionalized) vesicles, in segmented networks or as nanoreactors.  相似文献   

7.
A novel glycopeptide-containing block copolymer, poly[O-(tetra-O-acetyl-β-D -glucopyranosyl)-L -serine]-block-poly(2-methyl-2-oxazoline) ( 5 ), was synthesized by mutual termination of living polymerizations of a sugar-substituted α-amino acid N-carboxyanhydride (NCA) ( 1 ) and 2-methyl-2-oxazoline ( 3 ). 5 was deacetylated to provide the glycopeptide-polyoxazoline block copolymer, poly[O-(β-D -glucopyranosyl)-L -serine]-block-poly(2-methyl-2-oxazoline) ( 6 ).  相似文献   

8.
A method for the synthesis of well-defined poly(alkyl vinyl ether–2-ethyl-2-oxazoline) diblock copolymers with hydrolytically stable block linkages has been developed. Monofunctional poly(alkyl vinyl ether) oligomers with nearly Poisson molecular weight distributions were prepared via a living cationic polymerization method using chloroethyl vinyl ether together with HI/ZnI2 as the initiating system and lithium borohydride as the termination reagent. Using the resultant chloroethyl ether functional oligomers in combination with sodium iodide as macroinitiators, 2-ethyl-2-oxazoline was polymerized in chlorobenzene/NMP to afford diblock copolymers. A series of poly(methyl vinyl ether–2-ethyl-2-oxazoline) diblock materials were found to have polydispersities of ≈ 1.3–1.4 and are microphase separated as indicated by two Tg's in their DSC thermograms. These copolymers are presently being used as model materials to study fundamental parameters important for steric stabilization of dispersions in polar media. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The new oxazoline-containing monomers, 4-acrylyloxymethyl-2,4-dimethyl-2-oxazoline (AOMO), 4-methacrylyloxymethyl-2,4-dimethyl-2-oxazoline (MAOMO), 4-methacrylyloxymethyl-2-phenyl-4-methyl-2-oxazoline (PMAOMO), and the previously known monomer, 2-isopropenyl-4,4-dimethyl-2-oxazoline (IPRO), were synthesized for addition polymerization studies. The monomers were homopolymerized in benzene using a free radical initiator and in aqueous media using emulsion techniques. Molecular weights of 8,000–15,000 (M?w) were obtained for the homopolymers. Copolymerization studies were carried out with AOMO, MAOMO, and IPRO as M1, and methyl methacrylate (MMA), methyl acrylate (MA), styrene (STY), acrylonitrile (AN), and vinyl acetate (VA) as M2 for each case of M1. Relative reactivity ratios for the fifteen copolymers and Q and e values for the three oxazoline monomers were determined. The r1 values for AOMO and MAOMO copolymerizations indicated a lower value of k11 than expected, presumably because of steric effects. The r1 values in the IPRO copolymerizations were somewhat larger than expected. It was proposed that significant electron donation to the radical center of IPRO·by resonance effects occured.  相似文献   

10.
Well-defined graft copolymers were obtained using a copper-catalysed azide-alkyne Huisgen's cycloaddition click reaction from both biocompatible and non-toxic poly(ε-caprolactone) and poly(2-methyl-2-oxazoline) homopolymers. Resulting amphiphilic copolymers proved to form micelles that could be used as potential drug carriers.  相似文献   

11.
Eight-arm star-shaped poly(2-alkyl-2-oxazoline) (M?≈?21,000?g?·?mol?1) was studied by turbidimetry and light scattering in aqueous solutions within concentration ranging from 0.00038 to 0.0276?g?·?cm?3. The arms were the block copolymers of poly(2-isopropyl-2-oxazoline) (PiPrOx) and poly(2-ethyl-2-oxazoline) (PEtOx). Calix[8]arene core was connected with poly(2-isopropyl-2-oxazoline). The behavior of investigated polymer differed from that of thermosensitive stars with poly(2-alkyl-2-oxazoline) homopolymer arms. At low temperatures, the aggregates were formed due to interaction of hydrophobic cores. The phase separation temperatures T1 and T2 of studied star were higher than those for star-shaped poly(2-isopropyl-2-oxazoline) and lower than for poly(2-ethyl-2-oxazoline). T1 and T2 increased with dilution.  相似文献   

12.
Molecular design, fabrication, and properties of thin-film coatings based on poly(2-methyl-2-oxazoline) (PMOX) and its copolymers were investigated to tackle problem of marine and bacterial fouling prevention. The ultraviolet crosslinkable macromonomer poly(2-methyl-2-oxazoline) dimethylacrylate was synthesized by cationic ring-opening polymerization in a microwave reactor initiated by 1,4-dibromobutane. In order to study the charge effect of the PMOX coatings on the adhesion of fouling organisms, PMOX surfaces with negative, neutral, and positive ζ-potential values were prepared by copolymerization with the positively charged monomer [2-(methacryloyloxy)-ethyl]trimethylammonium chloride. The coatings were stable in sea water for at least 1 month without significant reduction in the film thickness. The marine antifouling activity was evaluated against barnacle cyprids Amphibalanus amphitrite and algae Amphora coffeaeformis. Results showed that PMOX coatings provide effective reduction of the settlement regardless of the molar mass and surface charge of the polymer. Bacterial adhesion test showed that PMOX coatings effectively reduce Staphylococcus aureus and Escherichia coli adhesion. Owing to its good stability and antifouling activity PMOX has a great potential as antifouling coating for marine antifouling applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 275–283  相似文献   

13.
Thermo-sensitive poly(2-isopropyl-2-oxazoline)s (PiPrOx) were functionalized with end groups of different polarity by living cationic ring-opening polymerization using the initiator and/or termination method as well as sequential block copolymerization with 2-methyl-2-oxazoline. As end groups, methyl, n-nonyl, piperidine, piperazine as well as oligo(ethylenglygol) and oligo(2-methyl-2-oxazoline) were introduced quantitatively. The lower critical solution temperature (LCST) of the aqueous solutions was investigated. The introduction of hydrophobic end groups decreases the LCST, while hydrophilic polymer tails raise the cloud point. In comparison to poly(N-isopropyl acrylamide), the impact of the end group polarity upon the modulation of the LCST was found to be significantly stronger. Surprisingly, terminal oligoethylenegycol units also decrease the LCST of PiPrOx, thus acting as moieties of higher hydrophobicity as compared to the poly(2-oxazoline) main chain. Together with the possible variation of the side group polarity, this allows a broad modulation of the LCST of poly(2-oxazoline)s.  相似文献   

14.
Living cationic copolymerization of 2-isopropyl-2-oxazoline with 2-n-propyl-, 2-n-butyl-, and 2-n-nonyl-2-oxazoline results in gradient copolymers of defined composition, narrow molar mass distributions (PDI = 1.09–1.3), and defined overall degree of polymerization, set to n = 25 for all polymers. The introduction of monomer units of stronger amphiphilic character results in a systematic decrease of the lower critical solution temperature (LCST). The LCST modulation can be controlled by the choice of the comonomer as well as the comonomer ratio and was tuned in the temperature range from 46 to 9 °C. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A protected aldehyde-functionalized 2-oxazoline, 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx), was synthesized from commercially available compounds in high yields. The polymerization of DPOx with different initiators proceeds via a living ionic mechanism; thus, the polymers were of low polydispersity and the degree of polymerization could be precisely adjusted. Copolymerization with 2-methyl-2-oxazoline gave water-soluble statistical copolymers. Hydrolysis of the homo- and copolymers resulted in well-defined, aldehyde-bearing poly(2-oxazoline)s. The aldehyde side functions reacted quantitatively with an amino-oxy compound to form the corresponding oxime.  相似文献   

16.
Poly(N-acyl ethylenimine) of various molecular weights was synthesized by the cationic ring-opening polymerization of 2-H-2-oxazoline and 2-methyl-2-oxazoline. Acid hydrolysis afforded the linear poly(ethylenimine) which was used in the following grafting reactions. Vapor pressure osmometry, gel permeation chromatography and viscosity measurements were used to characterize the polymers synthesized. Potassium 2-(cytos-1-yl)propanoate and potassium 3-(cytos-1-yl)butanoate were synthesized in good yield from the nucleic acid base. These cytosyl pendant groups were grafted onto the poly(ethylenimine) using 4-chloro-1-(4-chlorobenzenesulfonyl)benzotriazole, 93% graft, and norborn-5-ene-2,3-carboximido diphenyl phosphate, 70% graft. Grafting of the t-butoxycarbonyl and n-butoxycarbonyl protected cytosyl pendant groups resulted in a 47% and 40% graft, respectively.  相似文献   

17.
Summary: The cationic ring opening polymerization of 2-ethyl-2-oxazoline (EtOx) was applied for the synthesis of methacrylate end-functionalized well-defined macromonomers that could be polymerized in a controlled manner using reversible addition-fragmentation chain transfer polymerization. The obtained comb polymers revealed lower critical solution temperature behavior in aqueous solution. The cloud points of these solutions could be tuned in a range from 35 °C to 85 °C by the incorporation of hydrophobic methyl methacrylate comonomer in varying amounts into the graft copolymers whereas copolymerization with methacrylic acid rendered temperature and pH sensitive copolymers. Thermo-gravimetric analysis showed a two-step decomposition of the graft copolymers and differential scanning calorimetry revealed glass transition temperatures that are significantly lowered in comparison to linear PEtOx.  相似文献   

18.
Binary blends of poly(vinyl chloride) (PVC) and chitin-graft-poly(2-methyl-2-oxazoline) showed miscibility in the blend fraction range of the latter lower than ca. 10 wt.-%. The glass transition temperature of PVC, which was determined by differential scanning calorimetry, changed to lower temperatures with increasing modified chitin contents up to 10 wt.-%. Segmental interaction between PVC and the graft copolymer was confirmed by the carbonyl stretching band shift in the FT-IR analysis.  相似文献   

19.
We have studied different thermo-responsive poly(2-oxazoline)s with iso-propyl (iPrOx) and n-propyl (nPrOx) pendant groups in aqueous solutions, where they exhibit lower critical solution temperature behavior. This paper focuses on the effect of the degree of polymerization, n, the concentration, c, in the dilute regime, and the presence of hydrophobic moieties. The cloud points were investigated as a function of the degree of polymerization, n, and of the polymer concentration, c. The aggregation behavior near the cloud point was studied by temperature-resolved small-angle neutron scattering and fluorescence correlation spectroscopy, i.e., a combination of ensemble and single molecule methods. We found that at the cloud points, large aggregates are formed and that the cloud points depend strongly on both, n and c. Diblock copolymers from iPrOx and nPrOx form large aggregates already at the cloud point of PnPrOx, and, unexpectedly, no micelles are observed between the cloud points of the two blocks. Gradient copolymers from iPrOx and n-nonyl-2-oxazoline (NOx) display a complex aggregation behavior resulting from the interplay between intra- and intermolecular association mediated by the hydrophobic NOx blocks. Above the cloud point, an intermediate temperature regime with a width of a few Kelvin was found with small but stable polymer aggregates. Only at higher temperatures, larger aggregates are found in significant number.  相似文献   

20.
Thermoresponsive and pH‐responsive graft copolymers, poly(L ‐glutamate)‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) and poly(L ‐glutamic acid‐co‐(L ‐glutamate‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate))), were synthesized by ring‐opening polymerization (ROP) of N‐carboxyanhydride (NCA) monomers and subsequent atom transfer radical polymerization of 2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate. The thermoresponsiveness of graft copolymers could be tuned by the molecular weight of oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) (OMEO3MA), composition of poly(L ‐glutamic acid) (PLGA) backbone and pH of the aqueous solution. The α‐helical contents of graft copolymers could be influenced by OMEO3MA length and pH of the aqueous solution. In addition, the graft copolymers exhibited tunable self‐assembly behavior. The hydrodynamic radius (Rh) and critical micellization concentration values of micelles were relevant to the length of OMEO3MA and the composition of biodegradable PLGA backbone. The Rh could also be adjusted by the temperature and pH values. Lastly, in vitro methyl thiazolyl tetrazolium (MTT) assay revealed that the graft copolymers were biocompatible to HeLa cells. Therefore, with good biocompatibility, well‐defined secondary structure, and mono‐, dual‐responsiveness, these graft copolymers are promising stimuli‐responsive materials for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号