首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysiloxane/polyolefin copolymers have drawn much attention recently and emerged as a new group of functional polyolefin since they possess distinctive properties and find great potential applications in many areas (eg, compatibilizer, processing aid and surface modifier). However, traditional routes to synthesize polysiloxane/polyolefin copolymers generally require multi‐step labor‐consuming procedures. Herein, we report a novel one‐step synthesis of polydimethylsiloxane graft polyethylene (PDMS‐g‐PE) mimics. It was found that PDMS‐g‐PE mimics, namely vinylmethylsiloxane‐dimethylsiloxane‐(C30‐45 alkyl)methylsiloxane copolymers (short for VD‐AMS), could be formed via a one‐step synthetic procedure based on the siloxane equilibrium process between silanol‐terminated vinylmethylsiloxane‐methylsiloxane copolymer and (C30‐45 alkyl)methylsilicone. The chemical structures of VD‐AMS were characterized unambiguously using Fourier transform infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry. The correlation between reaction conditions and the structural parameters of VD‐AMS was established. Based on our experimental results, a plausible mechanism for the synthesis of VD‐AMS was proposed. Scanning electron microscopy micrographs showed that VD‐AMS could function as an efficient compatibilizer for immiscible PE/silicone blend. Given that the precursors of VD‐AMS are commercially available with low prices and that VD‐AMS can be easily synthesized under mild conditions, we believe VD‐AMS can represent as a competitive potential compatibilizer due to its relatively low cost.  相似文献   

2.
Statistical and block all‐siloxane copolymers containing quaternary ammonium salt (QAS) groups with biocidal activity as lateral substituents were synthesized as models for the study of the effect of the arrangement of the QAS groups in the copolymer chain on their antimicrobial activity. The bioactive siloxane unit was [3‐n‐octyldimethylammoniopropyl]methylsiloxane, and the neutral unit was dimethylsiloxane. The copolymers also contained siloxane units with unreacted precursor 3‐chloropropyl or 3‐bromopropyl groups. A small number of units containing highly hydrophilic 3‐(3‐hydroxypropyl‐dimethylammonio)propyl groups were introduced to increase the solubility of the copolymers in water. The bioactive and bioneutral units were arranged in the polymer chain either in blocks or in statistical order. The block copolymers differed in the number and length of segments. The copolymers were obtained by the quaternization of tertiary amines by chloropropyl or bromopropyl groups attached to polysiloxane chains. The arrangement of the bioactive groups was controlled by the arrangement of the halogenopropyl groups in the bioactive copolymer precursor. All model siloxane copolymers showed high bactericidal activity in a water solution toward the gram‐negative bacteria Escherichia coli and the gram‐positive bacteria Staphylococcus aureus. However, no essential differences in the activities of the copolymers with block and statistical arrangements of units were detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2939–2948, 2003  相似文献   

3.
The syntheses of poly(methylsiloxane)s containing 4-[S(-)-L-methyl-1 -butoxy] -4′-[p-(ω -alkan -1 -yloxy)benzoyloxy] -a-methylstilbene side groups containing 11-undecanyl (18), 8-octyl (19), 6-hexyl (20), and 3-propyl (21), of a poly[(50-55%)-methyl-co-(45-50%)-dimethylsiloxane] containing 4-[S(-)-2-methyl-1-butoxy]-4′-[p-(8-octan-1-yloxy)benzoyloxy]-α-methylstilbene side groups (22) and of a poly(methylsiloxane) containing a 1:1 molar ratio of 4-[S(-)-2-methyl-1 -butoxyl]-4′ -[p-(8-octan-1 -yloxy)benzoyloxy] -α-methylstilbene and 4-[S(-)-2-methyl-l -butoxyl-4′ -[p-(6-hexan-1-yloxy)-benzoyloxyl-α-methylstilbene side groups (23) are described. All polymers and copolymers were characterized by a combination of differential scanning calorimetry and thermal optical polarized microscopy techniques. 18 exhibits an enantiotropic S A, while 19, 20, 21, and 23 display both enantiotropic s A and S*c mesophases. 22 exhibits only an enantiotropic s: mesophase. In addition, all polymers and copolymers exhibit sidechain crystallization. These results have demonstrated that extending the length of the rigid part of the mesogenic unit of 4-[S(-)-2-methyl-l-butoxy]-4′-(ω-alkan-l-yloxy)-α-methylstilbene to 4-[S(-)-2-methyl-l-butoxy]-4′ -[p-(ω-alkan-l -yloxy)benzoyloxy]-α-methylstilbene increases the tendency of the resulting poly(methylsiloxane)s toward polymesomorphism.  相似文献   

4.
Abstract

The synthesis and characterization of polymethacrylates, polyacrylates, and poly(methylsiloxane)s containing 4-[S(-)-2-methyl-1-butoxy]-4′-(ω-alkanyl-1-oxy)-α-methylstilbene side groups with ω-alkanyl from 11-undecanyl to 2-ethyl are presented. According to both differential scanning calorimetry and thermal optical polarized microscopy analyses, the poly(methylsiloxane)s containing 1-octyl and 1-hexyl as ω-alkanyl groups exhibit enantiotropic S A and S C* mesophases. All other polymers display only an enantiotropic S A mesophase.  相似文献   

5.
Alternating and random copolymers of ethyl α-cyanocinnamate and vinyl acetate were studied. Infrared, 1H, and 13C spectra of the copolymers are discussed by comparison with a model compounds, poly(vinyl acetate), and various copolymers. The decomposition temperature and Tg of copolymers of various composition, studied by TMA and DSC, increase both with increasing content of ethyl α-cyanocinnamate.  相似文献   

6.
NMR spectroscopy was applied for quantitative and qualitative characterization of the chemical composition and microstructure of a series of poly(3‐hydroxybutyrate‐co‐3‐hydoxyvalerate) copolymers, P(3HB‐co‐3HV), synthesized by mixed microbial cultures at several different feeding strategies. The monomer sequence distribution of the bacterially synthesized P(3HB‐co‐3HV) was defined by analysis of their high‐resolution 1D 13C NMR and 2D 1H/13C HSQC and 1H/13C HMBC NMR spectra. The results were verified by employment of statistical methods and suggest a block copolymer microstructure of the P(3HB‐co‐3HV) copolymers studied. Definitive distinction between block copolymers or a mixture of random copolymers could not be achieved. NMR spectral analysis indicates that the chemical composition and microstructure of the copolymers can be tuned by choosing a correct feeding strategy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Mean-square unperturbed dimensions 〈r20 and dipole moments 〈μ2〉 have been calculated for propylene–vinyl chloride copolymers by means of rotational isomeric state theory. The calculations indicate that for these chain molecules 〈mu;2〉 is much more sensitive to chemical sequence distribution than is 〈r20, a conclusion in agreement with results of previous studies of ethylene–propylene copolymers and styrene-substituted styrene copolymers. In the case of propylene–vinyl chloride chains, both 〈r20 and 〈μ2〉 are most strongly dependent on chemical sequence distribution in the case of copolymers which are significantly syndiotactic in stereochemical structure. At equimolar chemical composition, increase in average chemical sequence length generally increases 〈r20 but decreases 〈μ2〉. Under some conditions, values of these statistical properties go through a minimum with increase in the reactivity ratio product r1r2, thus complicating the use of experimental values of these properties in the characterization of chemical sequence distributions in these copolymers.  相似文献   

8.
Two types of biodegradable poly(ε-caprolactone (CLo))-co-poly(ε-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. For the first type of materials, the respective cyclic comonomers were added simultaneously in the reaction medium leading to the formation of copolymers having a random distribution of co-units within the polyesteramide sequence, as evidenced by 1H and 13C NMR. For the second type of copolymers, the cyclic comonomers were added sequentially in the reaction medium yielding diblock polyesteramides, again evidenced by NMR. The thermal and thermo-mechanical properties of the copolymers were investigated by DSC and DMA and correlated with the copolymer topology and composition. The copolymers were characterized by a storage modulus and α transition temperature intermediate to the modulus and Tg of the corresponding homopolymers. The chemical composition and molecular weight of the copolymers proved to have only a limited effect on the thermo-mechanical properties of the materials. The hydrolytic degradation of random copolymers was studied in a phosphate buffer at 60 °C and discussed in terms of chemical composition and molecular weight of the copolymers.  相似文献   

9.
Biodegradable poly(tert‐butyl acrylate)–poly[(R)‐3‐hydroxybutyrate]–poly (tert‐butyl acrylate) triblock copolymers based on bacterial poly[(R)‐3‐hydroxybutyrate] (PHB) were synthesized by atom transfer radical polymerization. The chain architectures of the triblock copolymers were confirmed by 1H NMR and 13C NMR spectra. Gel permeation chromatography analysis was used to estimate the molecular weight characteristics and lengths of the PHB and poly(tert‐butyl acrylate) blocks of the copolymers. The thermal properties of the copolymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA showed that the triblock copolymers underwent stepwise thermal degradation and had better thermal stability than their respective homopolymers, whereas DSC analyses showed that a microphase‐separation structure was formed only in the triblock copolymers with the longer PHB block. As a similar result, from wide‐angle X‐ray diffraction experimentation, the crystalline phase of PHB could not be seen evidently in the triblock copolymers with the shorter PHB block. The enzymatic hydrolysis of the copolymer films was carried at 37 °C and pH 7.4 in a potassium phosphate buffer with an extracellular PHB depolymerase from Penicillum sp. The biodegradability of the triblock copolymers increased with an increase in the PHB block content. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4857–4869, 2005  相似文献   

10.
Alternating and random copolymers in dilute solution are investigated by means of Monte Carlo simulations on a cubic lattice. Each molecule consists of an equal number of A and B segments, either randomly distributed along the chain or forming an alternating sequence. The energy parameters chosen represent selective solvent conditions (the solvent is a good one for monomers of type A and a θ-solvent for B; between A and B repulsive interactions are operative). Comparison with di- and triblock copolymers of equal overall composition reveals that the behaviour of random or alternating copolymers (subject to the same selective solvent) is quite different. Their properties rather resemble those of homopolymers in a solvent of intermediate quality. The absolute chain dimensions (e.g. the mean square radius of gyration, 〈s2〉, and the mean square end-to-end distance, 〈h2〉) of random and alternating copolymers as well as their scaling exponents are significantly larger than those of block copolymers. The ratio between 〈h2〉 and 〈s2〉 as well as the shape of the polymer (expressed by the asphericity δ) are similar to those of athermal polymers indicating that there is no pronounced selectivity of the solvent. In contrast to block copolymers, these parameters exhibit no significant chain-length dependence. The number of the various types of polymer-polymer contacts (A-A, B-B and A-B) is almost independent of the type of contact at least for the solvent conditions investigated. This is in contrast to block copolymers where A-B contacts are widely suppressed and where the number of B-B contacts is approximately twice as high as that of A-A contacts.  相似文献   

11.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

12.
Biodegradable and amphiphilic diblock copolymers [polylactide-block-poly(ethylene glycol)] and triblock copolymers [polylactide-block-poly(ethylene glycol)-block-polylactide] were synthesized by the anionic ring-opening polymerization of lactides in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. The polymerization in toluene at room temperature was very fast, yielding copolymers of controlled molecular weights and tailored molecular architectures. The chemical structure of the copolymers was investigated with 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and differential scanning calorimetry investigations. The monomodal profile of the molecular weight distribution by gel permeation chromatography provided further evidence of block copolymer formation as well as the absence of cyclic species. Additional confirmation of the block copolymers was obtained by the substitution of 2-butanol for poly(ethylene glycol); butyl groups were clearly identified by 1H NMR as polymer chain end groups. The effects of the copolymer composition and lactide stereochemistry on the copolymer properties were examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2235–2245, 2007  相似文献   

13.
三嵌段共聚物PAN-b-PEG-b-PAN的合成及其自组装行为的研究   总被引:3,自引:0,他引:3  
雷忠利  刘亚兰 《化学学报》2006,64(24):2403-2408
利用原子转移自由基聚合(ATRP)制得了分子量可控、分子量分布窄的聚丙烯腈-b-聚乙二醇-b-聚丙烯腈P(AN-b-PEG-b-PAN)嵌段共聚物. 通过1H NMR, FTIR, 凝胶渗透色谱(GPC)对所得产物的结构和分子量进行了表征并通过TG和DTA考察了该嵌段共聚物的热稳定性; 运用透射电子显微镜(TEM)、荧光探针技术和动态光散射(DLS)研究了P(AN)27-b-P(EG)45-b-P(AN)27在溶剂水中胶束的形成、结构、形貌和胶束粒径. 结果表明, 三嵌段共聚物P(AN)27-b-P(EG)45-b-P(AN)27的热稳定性较纯聚乙二醇P(EG)好, 且柔性链PEG的引入对嵌段共聚物的放热峰位置没有显著的影响. 当改变此嵌段共聚物溶液浓度时, 该嵌段共聚物会自组装成不同形状的胶束, DLS测量的胶束粒径大于TEM观察的结果, 其临界胶束浓度(cmc)约为4.46×10-4 g•L-1.  相似文献   

14.
1H,1H,2H,2H‐Perfluorooctyloxymethylstyrene (FS) was prepared and copolymerized with chloromethylstyrene (CMS). Conventional radical copolymerization of both these aromatic monomers led to poly(CMS‐co‐FS) random copolymers for which CMS was shown to be more reactive than the fluorinated comonomer. Their controlled radical copolymerization based on degenerative transfer, namely iodine transfer polymerization (ITP), led to various poly(CMS)‐b‐poly(FS) block copolymers. Molecular weights of poly(CMS‐co‐FS) copolymers reached 33,000 g mol?1 while those of poly(CMS)‐b‐ poly(FS) block copolymers were 22,000 g mol?1. Their composition ranged from 18 to 61 mol.% in FS. These copolymers were modified via a cationization step, aiming at replacing the chlorine atom in CMS unit by a trimethylammonium group, leading to the formation of cationic sites. The resulting functionalized copolymers exhibited different solubilities. If both copolymerization techniques led to water‐insoluble copolymers, the block architecture enabled incorporating lower FS proportion, resulting in more cationic sites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Results of our studies on polymerization kinetics and tests of copolymerization statistical models of ethylene-norbornene (E-N) copolymers obtained on the basis of microstructures determined by 13C NMR analysis are reported. Ethylene-norbornene (E-N) copolymers were synthesized by catalytic systems composed of racemic isospecific metallocenes, i-Pr[(3Pri-Cp)(Flu)]ZrCl2 or a constrained geometry catalyst (CGC) and methylaluminoxane. Polymerization kinetics revealed that E-N copolymerization is quasi living under standard polymerization conditions. Calculations of the number of active sites and of chain propagation and chain transfer turnover frequencies indicate that the metal is mainly in the Mt-N* state, while the Mt-E* state contributes more to transfer and propagation rates. The first-order and the second-order Markov statistics have been tested by using the complete tetrad distribution obtained from 13C NMR analysis of copolymer microstructures. The root-mean-square deviations between experimental and calculated tetrads demonstrate that penultimate (second-order Markov) effects play a decisive role in E-N copolymerizations. Results show clues for more complex effects depending on the catalyst geometry in copolymers obtained at high N/E feed ratios. Comonomer concentration was shown to have a strong influence on copolymer microstructure and copolymer properties. The copolymer microstructure of alternating isotactic copolymers obtained with i-Pr[(3Pri-Cp)(Flu)]ZrCl2 have been described at pentad level. Second-order Markov statistics better describes also the microstrucure of these copolymers.  相似文献   

16.
Biodegradable, triblock poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) (PLA‐b‐PCL‐b‐PLA) copolymers and 3‐star‐(PCL‐b‐PLA) block copolymers were synthesized by ring opening polymerization of lactides in the presence of poly(ε‐caprolactone) diol or 3‐star‐poly(ε‐caprolactone) triol as macroinitiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C‐NMR. The formation of block copolymers was confirmed by NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5363–5370, 2008  相似文献   

17.
We report preliminary results for the synthesis of polyethylene‐graft‐poly(dimethylsiloxane) copolymers obtained by catalytic hydrogenation of polybutadiene‐graft‐poly(dimethylsiloxane) copolymers (PB‐g‐PDMS). These last copolymers were synthesized by hydrosilylation reactions between commercial polybutadiene and ω‐silane poly(dimethylsiloxane). The reaction was carried in solution catalyzed by cis‐dichloro bis(diethylsufide) platinum(II) salt. The PB‐g‐PDMS copolymers were analyzed by 1H and 13C NMR spectroscopies, and the relative weight percentages of the grafted poly(dimethylsiloxane) macromonomer were determined from the integrated peak areas of the spectra. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2920–2930, 2004  相似文献   

18.
The synthesis of poly(acrylonitrile)-block-poly-(ethylene glycol)-block-poly(acrylonitrile) copolymers has been carried out using a redox system consisting of ceric ion and poly(ethylene glycol)s of various molecular weights in aqueous medium. The generation of intermediate radicals in the redox process has been confirmed by ESR spectroscopy and the polymerization progressing through ‘blocking from’ mechanism has been postulated. The formation of the block copolymers has been confirmed by chemical tests and fractional precipitation technique as well as by FT-IR and FT-NMR [1H and 13C–(1H)] spectroscopic techniques. The triblock nature of the block copolymers has been ascertained through the cleavage of ether linkage of the PEG segment. TG/DTA studies of the block copolymers with PEG molecular weights of 1000 and above revealed two-stage decomposition, while their DSC traces exhibited a shift in the melting peak of PEG. GPC investigations of the block copolymers manifested a high homogeneity with unimodal distribution of molecular weights. SEM studies indicated significant changes in the morphological characteristics of the block copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The 1:1 and 2:1 formulations of the free radical initiated copolymers of methyl methacrylate (MMA) and tri-n-butyltin methacrylate (TBTM), and the homopolymer, poly(TBTM), are characterized by 13C- and 119C-NMR structural analyses were performed on the tributyltin-free hydrolyzate, a copolymer of MMA and methacrcylic acid (MAA). Configurational sequencing at the triad level is performed using the α-methyl region of the 13C-NMR spectrum. The probability of isotactic (meso) dyad placement at 80°C in the homopolymer (0.19) is determined to be significantly less than the probabilities observed for the copolymers (0.23–0.24). Random compositional sequencing is established for the copolymers through a comparison of the carbonyl regions of the 13C-NMR spectra of the hydrolyzates with the carbonyl regions in published spectra of structurally characterized copolymers of MMA and MAA. The 119Sn chemical shift and the tin-carbon J coupling for the polymers are dependent on the solvent employed. This dependence is attributed to electron donor or acceptor interactions between the solvent and the strong Sn? O dipole. The tin-containing copolymers exhibit multiple 119Sn resonances, which appear related to compositional sequencing.  相似文献   

20.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号