共查询到20条相似文献,搜索用时 0 毫秒
1.
C. M. Roland 《Journal of Polymer Science.Polymer Physics》1988,26(4):839-856
Difference spectra of blends of cis-1,4-polyisoprene and atactic poly(vinylethylene), obtained from the measured FTIR spectra of the pure components and the blends, indicate that mixing of these polymers is not accompanied by any specific chemical interactions. Miscibility in this system arises solely due to the small combinatorial entropy of mixing. The conformation and configuration of the polymer chains in the blends are, therefore, identical to those in the pure melts. As a consequence it was found that the entanglement density of the blends varied monotonically with composition. This variation, however, was not in accordance with predictions based simply on the mechanical interaction density. The principle rheological effect of miscible blending was a large change in the monomeric friction coefficient, which arises from the strong dependence of free volume on composition. The zero shear viscosity and the terminal relaxation time of the blends reflected this change in local chain mobility. Empirical relations, which have previously been proposed for the properties of miscible polymer mixtures, were found to be without merit in describing the obtained experimental results. 相似文献
2.
Recent experiments designed to probe polymer transport in the bulk and in the vicinity of surfaces have examined the interdiffusion of multilayer sandwiches of isotopically labeled polymers. The measured time dependent concentration profiles normal to the surface are typically fit to Fick's law, with a single fitting parameter, the mutual binary diffusion coefficient (MBDC). The resulting MBDCs are found to vary over a broad range of film thicknesses and time, with the time dependence being viewed as a unique signature of the reptation mechanism of long chain motion, and the thickness dependence being attributed to the slowing down of chain dynamics near surfaces. Since the experiments are conducted at finite concentration, the MBDC, which is a product of the bare mobility and the concentration derivative of the chemical potential, could be dominated by the time and thickness dependence of this second term (which is ignored in Fick's law). To quantify this conjecture we consider the more rigorous Cahn formulation of the diffusion problem in terms of chemical potential gradients. We use square gradient theory to evaluate chemical potentials, and fit the resulting time dependent concentration profiles to the analytical solution of Fick's law. By thus mimicking the experimental analysis we find that the apparent MBDCs vary with time as t(-1/2) at short times, in good agreement with existing experiments. We show that this time dependence reflects the system's desire to minimize concentration gradients, a fact ignored in Fick's law. Since these arguments make no reference to the mechanism of chain motion, we argue that the time dependence of MBDC derived from interdiffusion experiments does not provide unequivocal support for the reptation mechanism of long chain transport. The MBDC values, which also vary with the degree of confinement, are predicted to increase with decreasing thickness for model parameters corresponding to experimental systems. In contrast, since the experimental fits yield an opposite trend, we suggest that the bare mobility of the chains decreases strongly with decreasing thickness. These findings strongly support the idea that the chains are "pinned" irreversibly to the surfaces, in good agreement with other, independent experiments. 相似文献
3.
Steady-state permeation measurements are reported for carbon dioxide (CO2) through quenched, amorphous films of a miscible blend of poly(butylene terephthalate) (PBT) and a random copolyester of bisphenol-A and iso/terephthalate acids (PAr). Permeabilities were determined at 35°C on blends with up to 60 wt % PBT and for CO2 pressures up to 300 psi (2.06 MPa). At a fixed blend composition, the permeability, P̄, decays with driving pressure, p, as described by dual-mode models for gas transport in glassy polymers. From regression fits of the data to dual-mode model predictions for P̄(p), high-and low-pressure limiting permeabilities are determined. These decrease with PBT content in a manner indicating strong, favorable energetic interactions between the PBT and PAr components in the blend. © 1996 John Wiley & Sons, Inc. 相似文献
4.
CMC and CMC-PVA were blended either with type I collagen, BSA or CS to obtain biocompatible membranes for evaluation as potential hepatocyte culture substrates. Pure and modified forms of CMC showed distinct surface, mechanical, and cell attachment properties. While the hydrophilicity decreased, the mechanical stability and the porosity of CMC membranes increased after blending. Serum proteins were adsorbed by all types of membranes. Among eight membranes tested, collagen-modified CMC was found to be a suitable membrane material for hepatocyte culture, in terms of mechanical and cell interaction properties. 相似文献
5.
S. Spall A. A. Goodwin M. D. Zipper G. P. Simon 《Journal of Polymer Science.Polymer Physics》1996,34(14):2419-2431
The dynamic mechanical and dielectric spectra of a miscible polyester and polycarbonate blend are investigated with emphasis on the latter technique. It was found that relaxation spectra for the blends from both techniques are broader than those of the constituent homopolymers. This is ascribed to greater intermolecular coupling and concentration fluctuations within the blends. The composition at which the greatest coupling occurs is dependent on the relaxation technique used and is skewed towards the component which shows the highest degree of intermolecular coupling. A number of parameters, such as relaxation time of the polymer molecules in the blend and relaxation strength, are compared as a function of reduced temperature (experimental temperature scaled by the glass transition temperature). Whereas blend behavior is generally intermediate between that of the homopolymers, it appears as though mobility of compositions with low polyester content have a greater relaxation time and possess a higher activation energy when compared to a simple, weighted average of the corresponding homopolymer values. © 1996 John Wiley & Sons, Inc. 相似文献
6.
7.
A supramolecular network polymer consisting of a pair of immiscible polymers, poly(butyl)methacrylate (PBMA) and polystyrene (PS), is described. A urea of guanosine (1, UG) and 2,7-diamido-1,8-naphthyridine (2, DAN), which form an exceptionally strong quadruply hydrogen-bonding complex, are displayed at 1-10 mol % along the main backbone of PBMA and PS, respectively. (1)H NMR studies show heterocomplexation between UG and DAN exclusively. This high-fidelity, high-affinity supramolecular connection of two different polymer coils at the molecular level produces a polymer blend. Blends containing different weight ratios of the polymers and mole percent of the recognition units were characterized by AFM and DSC experiments with no isolated domains observed and a single glass-transition temperature (T(g)). The T(g) is tunable by varying the weight ratio of the polymers in the blend. In addition, viscosity measurements, size-exclusion chromatography (SEC), and dynamic light-scattering (DLS) studies demonstrate the formation of a supramolecular network structure. 相似文献
8.
This review relates the free volume properties and the morphology to the mass transport coefficients of polymer nanocomposites. Direct, utilising the method of Positron Annihilation Life-time Spectroscopy (PALS), or indirect measurements of the free volume in the nanocomposites are discussed and the influence of spherical or anisometric nanoparticles on its properties is examined. 相似文献
9.
G.C. Kapantaidakis S.P. Kaldis X.S. Dabou G.P. Sakellaropoulos 《Journal of membrane science》1996,110(2):239-247
The permeation rates of He, H2, CO2, N2 and O2, are reported for a series of miscible polysulfone-polyimide (PSF-PI) blend membranes synthesized in our laboratory. For gases which do not interact with the polymer matrix (such as He, H2, N2 and O2), gas permeabilities in the miscible blends vary monotonically between those of the pure polymers and can be described by simple mixture equations. In the case of CO2, which interacts with PI, blend permeabilities decrease somewhat, compared to pure PSF and PI. This, however, is accompanied by a two-fold improvement in the critical pressures of plasticization vs. polyimide. Permselectivities of CO2/N2 and H2/CO2 in the blends deviate from mixing theory predictions, in contrast to selectivities of gas pairs which do not interact with PI. Differential scanning calorimetry measurements of pure and PSF/PI blend membranes show one unique glass transition temperature, supporting the miscible character of the PSF/PI mixture. Optical micrographs of the blend membranes clearly indicate perfect homogenization and no phase separation. Frequency shifts and absorption intensity changes in the FTIR spectra of the blends, as compared with those of the pure polymers, indicate mixing at the molecular level. This compatibility in mixing PSF and PI, results essentially in a new blend polymer material, suitable for the preparation of gas separation membranes. Such membranes combine satisfactory gas permeation properties, reduced cost, advanced resistance to harsh chemical and temperature environments, and improved tolerance to plasticizing gases. 相似文献
10.
The purpose of this work is to describe the application of new electron microscopy techniques to the study of polymer blends with very fine dispersion of phases (miscible blends). Blends of PVC with PMMA, PCL, POM and SAN were prepared by high temperature mixing on a two roll mill, or by solvent casting. Thin sections (or cast films) were investigated in the scanning transmission electron microscope and small phases were identified in most blends. The contrast was enhanced by electronic combination of bright and dark field signals, by an irradiation and staining technique and by differential mass loss. The specimens were further characterized by measurement of mass loss, resulting from electron beam damage. The non linear changes in the mass loss rate with concentration were interpreted as being influenced by partial solubility and molecular interactions. 相似文献
11.
We have investigated, in terms of the Cohen-Turnbull theory, a relationship for polycarbonate (PC) glasses between average stress relaxation times, <to, and average free volume sizes, 〈vf〉, obtained from positron annihilation lifetime spectroscopy. This examination suggests that the minimum free volume required for stress relaxation, v*, decreases with decreasing temperature and that, near the glass transition temperature, only a subset of extremely large free volume elements contributes to the stress relaxation of PC glasses. This suggestion is consistent with the idea that near the glass transition temperature, the viscoelastic response is dominated by large-scale, main-chain motion, whereas at lower temperature it is controlled by local motion. Moreover, comparison with the v* value estimated from gas diffusivity through various PC species at room temperature shows that the required free volume size for stress relaxation in the glass transition region is much larger than that for gas diffusion. Previously we showed that the Doolittle equation fails to correlate viscoelastic relaxation times of polymer glasses with changing temperature; determining the free volume fraction, h, from theoretical analysis of volume recovery data and theory, the Doolittle equation is shown to be valid in PC above 135°C (Tg - 14°C) irrespective of temperature and physical aging times. This result supports the idea suggested in the previous article that, as glassy polymers approach the transition region, viscoelastic properties increasingly tend to be controlled by free volume. © 1996 John Wiley & Sons, Inc. 相似文献
12.
The concept of crystallization dynamics method evaluating the miscibility of binary blend system including crystalline component
was proposed. Three characteristic rates, nucleation, crystal growth rates (N*, G*) and growth rate of conformation (G
c*) were used to evaluate the miscibility of PVDF/at-PMMA and PVDF/iso-PMMA by the simultaneous DSC-FTIR. N*, G* and G
c* depended remarkably on both temperature and blend fraction (ϕPMMA) for PVDF/at-PMMA system, which indicated the miscible system. PVDF/iso-PMMA showed small ϕPMMA dependency of N*, G* and G
c*, was estimated the immiscible system. The ΔT/T
m0 values, corresponding to Gibbs energy required to attend the constant G* and G
c*, evaluated from G* and G
c* showed the good linear relationships with different slope. The experimental results suggested that the concentration fluctuation
existed in PVDF/iso-PMMA system. 相似文献
13.
The complex thermorheological behaviour observed in miscible polymer blends is modelled by combining two existing theoretical approaches: The Thermal Concentration Fluctuation model (A. Zetsche, E.W. Fischer, Acta Polymer. 1994 , 45, 168) and the Effective Concentration model (T.P. Lodge, T.C.B. McLeish, Macromolecules 2000 , 33, 5278), giving rise to a simple model with only one adjustable parameter. This model is then tested in the case of two model blends allowing to show its abilities and limitations to describe how the respective segmental dynamics of lowest or highest Tg component are affected by blending. 相似文献
14.
Optical properties of a blend thin film (1:1 wt) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exposed to a stepwise heating and cooling, have been reported and compared with the properties of pure PCBM and P3HT films. The UV–Vis(T) absorption measurements were performed in situ, during annealing and cooling runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows to observe the changes of absorption coefficient spectra and absorption edge parameters: the energy gap (EG) and the Urbach energy (EU), connected with the length of conjugation and structural disorder of thin film, respectively. Several stages, during annealing/cooling runs, were distinguished for the P3HT:PCBM blend film and related to the following processes, as an increase of P3HT crystallinity in the blend, the orderly stacking of polymer chains, thermally induced structural defects and the phase separation, caused by an aggregation of PCBM in the polymer matrix. These changes were also observed on the P3HT:PCBM film surface, by means to the microscopic studies. 相似文献
15.
FTIR studies of PVC/PMMA blend based polymer electrolytes 总被引:1,自引:0,他引:1
Ramesh S Leen KH Kumutha K Arof AK 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,66(4-5):1237-1242
The polymer electrolytes composing of the blend of polyvinyl chloride-polymethyl methacrylate (PVC/PMMA) with lithium triflate (LiCF3SO3) as salt, ethylene carbonate (EC) and dibutyl phthalate (DBP) as plasticizers and silica (SiO2) as the composite filler were prepared. FTIR studies confirm the complexation between PVC/PMMA blends. The CCl stretching mode at 834 cm-1 for pure PVC is shifted to 847 cm-1 in PVC-PMMA-LiCF3SO3 system. This suggests that there is interaction between Cl in PVC with Li+ ion from LiCF3SO3. The band due to OCH3 at 1150 cm-1 for PVC-PMMA blend is shifted to 1168 cm-1 in PVC-PMMA-LiCF3SO3 system. This shift is expected to be due to the interaction between Li+ ion and the oxygen atom in PMMA. The symmetric vibration band and the asymmetric vibration band of LiCF3SO3 at 1033 and 1256 cm-1 shifted to 1075 and 1286 cm-1 in the DBP-EC plasticized PVC-PMMA-LiCF3SO3 complexes. The interaction between Li+ ions and SiO2 will lead to an increase in the number of free plasticizers (which does not interact with Li+ ions). When the silica content increases from 2% to 5%, the intensity of the peak at 896 cm-1 (due to the ring breathing vibration of free EC) increases in PVC-PMMA-LiCF3SO3-DBP-EC system. 相似文献
16.
Hiromu Saito Mamoru Takahashi Takashi Inoue 《Journal of Polymer Science.Polymer Physics》1988,26(8):1761-1768
Orientation relaxation of dissimilar chains in the molten miscible blends, poly(methyl methacrylate)/poly(vinylidene fluoride) and poly(methyl methacrylate)/poly(vinylidene fluoride-co-trifluoroethylene), were investigated by measuring (1) the change of infrared dichroic ratio with time after the uniaxial stretching of film specimens, (2) the shear stress relaxation spectrum, and (3) birefringence relaxation in shear. The dissimilar polymers showed an identical time variation of the normalized Hermans orientation function. The blend showed a relaxation spectrum with a single characteristic relaxation time τc, depending on the blend composition. The birefringence relaxed monotonically, remaining positive. These results suggest that the dissimilar polymers do not relax independently but cooperatively. This behavior may be induced by a constraint due to the specific interactions between the dissimilar polymers, e.g., weak hydrogen bonding. For the cooperative chain relaxation, a third power relationship was found; τc/τe vprop; (M/Me),3 where τe and Me are the relaxation time and molecular weight of entanglement strand, respectively, and M is the number average molecular weight in the blend. 相似文献
17.
V. P. Shantarovich 《Journal of polymer science. Part A, Polymer chemistry》2008,46(23):2485-2503
In this article, the interconnections between the ortho-positronium (the bound state of the positron and electron having parallel orientation of spins, TPs) pick-off annihilation characteristics and concentration and effective size of elementary free volumes in polymer structures are discussed. Free volume parameters are responsible for many important properties of polymers such as permeability to gases, selectivity, ageing mechanical strength, etc. However, the ways of quantitative estimations of size distributions of the free volume elements on the bases of experimental data are sometime not obvious. Various approaches to this problem are analyzed in this review mostly on examples of glassy polymer membrane materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2485–2503, 2008 相似文献
18.
M. D. Zipper G. P. Simon P. Cherry A. J. Hill 《Journal of Polymer Science.Polymer Physics》1994,32(7):1237-1247
Homopolymers and blends of polycarbonate/ThermX have been investigated by differential scanning calorimetry, dynamic mechanical analysis, density measurements, and positron annihilation lifetime spectroscopy. The study focuses on the chain mobility and free volume in the amorphous miscible regions of the blends and how this mobility and free volume are affected by increasing crystallinity. It is proposed that judicious annealing, which results in increasing crystallinity (while avoiding ageing or transesterification), induces a constraint on the amorphous region leading to an increase in Tg and coalescence of free volume sites. © 1994 John Wiley & Sons, Inc. 相似文献
19.
20.
Song Ju Park Jung Min Cho Won‐Bae Byun Jong‐Cheol Lee Won Suk Shin In‐Nam Kang Sang‐Jin Moon Sang Kyu Lee 《Journal of polymer science. Part A, Polymer chemistry》2011,49(20):4416-4424
Polymer solar cells (PSCs) were fabricated using a ternary blend film consisting two conjugated polymers and a soluble fullerene derivative as the donor and acceptor materials, respectively. And, to compare ternary blend system, the single‐component copolymers consisting of the repeating units of each of the copolymers, used in ternary blend solar cells, were designed and synthesized for use as the electron donor materials in binary blend solar cells. We systematically investigated the field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers. Under optimized conditions, the binary blend polymer systems showed power conversion efficiencies (PCEs) for the PSCs in the range 3.87–4.16% under AM 1.5 illumination (100 mW cm?2). All polymers exhibited similar PCEs that did not depend on the ratio of repeating units. The binary blend solar cell containing a single‐component copolymer as the electron donor material performed better than the ternary blend solar cell in this work. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献