首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用纤芯间距为38.78 μm的国产多芯光纤设计了一种光纤弯曲传感器.该多芯光纤弯曲传感器由长度为1 m的七芯光纤与单模光纤拼接制成,多芯光纤弯曲时,相邻的纤芯发生模式耦合.在传感器一侧,将宽带光注入到位于多芯光纤中心的纤芯,用光谱分析仪测量带有曲率信息的频谱,获得弯曲传感器的透射谱波长偏移与弯曲曲率半径的关系,结果表明:多芯光纤弯曲半径越小,弯曲曲率越大,串扰越明显.  相似文献   

2.
采用纤芯间距为38.78μm的国产多芯光纤设计了一种光纤弯曲传感器.该多芯光纤弯曲传感器由长度为1m的七芯光纤与单模光纤拼接制成,多芯光纤弯曲时,相邻的纤芯发生模式耦合.在传感器一侧,将宽带光注入到位于多芯光纤中心的纤芯,用光谱分析仪测量带有曲率信息的频谱,获得弯曲传感器的透射谱波长偏移与弯曲曲率半径的关系.结果表明:多芯光纤弯曲半径越小,弯曲曲率越大,串扰越明显.  相似文献   

3.
设计了一种多芯光纤Bragg光栅曲率传感器,并采用匹配滤波技术实现曲率解调。多芯光纤Bragg光栅曲率传感器是通过在多芯光纤的两个中心对称纤芯中写入Bragg光栅实现的。两个光纤Bragg光栅具有相似的反射谱和中心波长,当多芯光纤发生弯曲时,两个光纤Bragg光栅的反射谱叠加区域将发生改变。将两个光纤Bragg光栅构造成匹配滤波模式,则两个光纤Bragg光栅反射谱的叠加区域面积决定了输出信号的光强,而叠加区域的面积与光纤曲率有关。因此,通过测量匹配滤波信号的功率可以实现曲率解调。结果表明,匹配滤波技术能有效解调多芯光纤Bragg光栅曲率传感器,最大曲率解调灵敏度为0.78mW·m~(-1)。此外,测量了多芯光纤Bragg光栅曲率传感器在不同轴向应变和环境温度下的解调性能,结果表明,该曲率解调系统具有很强的抵抗外界环境波动的能力。  相似文献   

4.
由于探测光脉冲宽度受到限制,布里渊光时域反射仪(BOTDR)在对光纤上的应变进行分布式测量时,空间分辨力只能达到1 m。针对布里渊光时域反射仪单次采样接收背向布里渊散射信号(BBS)需要一定的时间,提出了基于等效脉冲光的多洛仑兹拟合法以提高其应变测量的空间分辨力。该方法将探测光脉冲在布里渊光时域反射仪完成单次采样所需的时间上进行积分,将积分函数作为等效脉冲光的表达式,再根据等效脉冲光的形状将布里渊光时域反射仪接收到的背向布里渊散射谱(BBS)细分,并对它进行多洛仑兹迭代拟合,准确求得每个细分布里渊散射谱的中心频率,进而利用光纤中布里渊频移与应变的对应关系,得到光纤中与细分布里渊散射谱对应的细分光纤单元上的应变情况。实验结果表明,利用这种方法,可使布里渊光时域反射仪应变测量的空间分辨力提高至0.05 m。  相似文献   

5.
针对多芯光纤三维位型重构问题,提出了一种基于螺旋多芯光纤和Bishop标架的三维位形重构方法。分析了基于螺旋多芯光纤和Bishop标架的三维位形重构算法原理,实验采用了螺旋多芯光纤布拉格光栅(Fiber Bragg gating, FBG)阵列传感,通过光谱漂移计算各个纤芯的应变值,并根据节点截面应变关系模型实现了纤芯曲率和扭转角解算,最后,结合Bishop迭代计算得到光纤整体位形,实现了形状重构。进行了4种形状的重构实验,最大三维重构绝对误差为3.11mm。实验结果表明,基于Bishop-HMCF的形状重构方法能够实现三维位形重构,在柔性机构末端定位和导航上具有重要的研究意义与应用价值。  相似文献   

6.
数值求解了光子晶体光纤中的去极化型声波导布里渊散射色散方程,研究了光子晶体光纤中的布里渊频移随泵浦波长及空气孔填充率的变化关系,以及去极化型声波导布里渊散射频移随温度、应变、声波导模式、纤芯直径及空气孔层数的关系。结果表明:布里渊频移随着波长的增大而线性减小。对于相同的波长点,增大光子晶体光纤空气孔填充率时,声波横向速度将会减小。去极化型声波导布里渊散射频移随温度及应变的增大而线性增加。同一温度条件下,高阶TR2m模式的去极化型声波导布里渊散射频移对温度的变化更为敏感;而在同一应变条件下,低阶TR2m模式的去极化型声波导布里渊散射频移对应变的变化更为敏感。去极化型声波导布里渊散射频移随纤芯直径的增加而增大,随空气孔层数的增加而减小。  相似文献   

7.
基于受激布里渊散射和弹性声学理论,给出了布里渊动态光栅理论模型。基于光纤布拉格光栅理论,采用数值模拟的方法计算了布里渊动态光栅的反射谱,证明了布里渊频移引起的布拉格波长下移等于多普勒频移。计算了泵浦功率为0.1~30 W、脉宽为2~10 ns、单模光纤芯径为8~10μm时的反射率和光谱宽度。当功率增长到30 W、脉宽达到10 ns时,峰值反射率分别达到2.17×10-6和7.16×10-9;反射谱的光谱宽度随着脉冲宽度的增加而减小,当脉冲宽度为10 ns时,最小光谱宽度为1.2×10-4nm;当纤芯直径减小到8μm时,反射率增长到6.64×10-11。计算结果表明,布里渊动态光栅的反射率与泵浦波的功率和脉宽呈正相关,与光纤的纤芯直径呈负相关;反射谱的光谱宽度不受泵浦波功率和纤芯直径的影响,但与脉冲宽度呈负相关。  相似文献   

8.
布里渊散射光纤传感器的交叉敏感问题   总被引:10,自引:0,他引:10  
基于布里渊散射的全分布式光纤传感器的布里渊频移同时受应变和温度的影响,无法由单一的布里渊频移解析应变或温度的信息,这种交叉敏感问题制约了传感器的实用化。介绍了目前解决交叉敏感问题的主要方法及工作原理。研究了大有效面积非零色散位移光纤(LEAF)的布里渊散射谱与应变和温度的关系,实验发现布里渊谱具有三个布里渊峰,三个峰的布里渊频移与应变和温度成线性关系,第一个峰和第三个峰的布里渊峰峰值功率的差值与温度无关,但与应变成线性关系。最后基于实验结果提出了一种解决交叉敏感问题的方案,获得了大约130με的应变测量精度和8℃的温度测量精度。  相似文献   

9.
应变梯度对布里渊光时域反射计测量精度的影响   总被引:4,自引:1,他引:3  
基于脉冲抽运的布里渊光时域反射计技术具有米数量级的空间分辩力。为了分析在其空间分辨力范围内的应变梯度增加对布里渊谱测量的影响,建立了后向布里渊散射谱与应变梯度的函数关系。数值分析结果表明应变梯度增大,不仅使布里渊频移随之线性增大,也会使后向布里渊散射谱峰值非线性降低,谱峰变得平坦。空间分辨力10m的100με/m应变梯度相对于零应变梯度,引起的布里渊频移测量误差增加2.04倍。传感光纤固定于悬臂梁上以模拟不同应变梯度,采用对频宽小于1MHz的激光脉冲调制和基于相干平衡检测的布里渊光时域反射计系统,实验测得了沿传感光纤的后向布里渊散射谱数据和应变分布。布里渊谱数据经最小二乘法拟合后,得到的不同应亦梯度的谱曲线变化与理论分析相吻合。  相似文献   

10.
少模光纤的受激布里渊散射对于分布式温度/应变传感具有重要应用价值.本文提出一种纤芯折射率呈M型分布的少模光纤,详细研究了光学模式LP_(01)和LP_(11)模式内及模式间的布里渊增益谱.研究结果表明:LP_(01)-LP_(11)模式对的布里渊增益谱中,其相邻两个布里渊散射峰的频率间隔较宽、增益峰值较大且峰值相差较小.通过优化光纤结构参数,提高了基于LP_(01)-LP_(11)模式对布里渊增益谱的温度和应变传感性能,最小误差分别为0.23℃和5.67μe.该研究对探究少模光纤中模式内及模式间的受激布里渊散射特性具有一定的指导意义,对提升同时温度和应变传感测量的性能具有一定参考价值.  相似文献   

11.
为解决微创手术软体机器人的形状实时监测问题,将刻有三个光纤布拉格光栅的单根光纤植入软体操作器中,利用其研究柔性硅胶软体操作器光纤传感和三维形状重构方法。进行了软体操作器的结构设计及模型建立,并对光纤光栅波长漂移量和软体操作器弯曲曲率之间的关系进行了理论分析;通过实验验证了软体操作器结构设计及其模型建立的有效性,测试了软体操作器不同弯曲状态下三个FBG传感器的反射谱特征及其变化规律;通过分析三个FBG传感器的中心波长漂移量,利用线性插值算法计算出软体操作器在不同弯曲状态下的曲率等参数,并结合曲线拟合方法实现软体操作器的三维形状重构。实验结果表明:植入式光纤光栅传感方法可以实现硅胶软体手术操作器的三维形状传感,在微创外科手术领域具有广阔的应用前景。  相似文献   

12.
光纤形状传感技术能够测量姿态、取向、径迹以及位置等三维空间信息,在精准介入医疗、变体飞行器以及连续体机器人等领域具有广泛应用前景。光频域反射仪具有高空间分辨率和分布式测量等特点,相较于光纤光栅的波分复用技术,在提高形状传感空间分辨率、形状重构精度以及传感长度等方面具有明显优势。在阐明光频域反射仪分布式应变传感原理的基础上,建立了弯曲形变与应变以及光纤瑞利散射光谱波长漂移之间的物理关系,同时构建了弯曲大小、弯曲方向以及挠率与空间曲线局域标架三个正交分量的数学关系,最后采用切向分量的线积分实现光纤三维形状重构。实验设计并制备了一种基于镍铬形状记忆合金丝与三根光纤束封装的形状传感器,其二维、三维形状末端的平均最大误差为传感器总长度的0.58%和3.45%。  相似文献   

13.
根据相干检测理论提出了一种基于多模法布里-珀罗激光器的光纤瑞利与布里渊散射自外差检测的布里渊光时域反射计传感系统,分析了该系统提高光纤受激布里渊散射阈值和瑞利与布里渊散射自外差检测的原理,推导出系统信噪比表达式,分析了纵模数与布里渊谱峰值功率、谱宽和系统信噪比、温度及应变测量准确度之间的关系,并进行了计算.结果表明,选用纵模间隔为0.141nm的多模法布里-珀罗激光器时,随着纵模数的增加,在25km光纤末端系统信噪比、温度和应变测量准确度均得到了较大提升,当纵模数为19时,温度和应变测量准确度分别达到最佳值3.81℃和86.69με.  相似文献   

14.
利用光纤在不同弯曲曲率下的不同形变,提出并验证了一种基于七芯光纤和少模光纤的新型光纤曲率传感器。分别制作了三种不同结构的传感器,利用快速傅里叶变换分析了它们的干涉模式,获得波长的传感灵敏度分别为6.33,30.83,15.96 nm/m,强度的传感灵敏度分别为8.57,25.65,1.96 dB/m。  相似文献   

15.
根据光纤传输理论建立了偏芯光纤理论计算模型.采用保角变换方法将偏芯光纤不对称的三层结构转换成同轴对称的三层结构,得到关于传播常量的特征方程,给出了偏芯光纤弯曲损耗公式.仿真分析了偏芯光纤弯曲损耗和弯曲半径之间的关系,结果表明当弯曲半径达到3mm时,弯曲损耗几乎为零,同时得到弯曲损耗随偏芯距离的变化关系.运用Rsoft软件中的BeamPROP模块建立偏芯光纤弯曲的光学模型,模拟仿真了弯曲的偏芯光纤中模场分布情况.仿真结果表明,偏芯光纤的弯曲方向与纤芯偏移中心轴线方向相同的弯曲损耗小于反方向的弯曲损耗.  相似文献   

16.
一个新型的基于全光纤Mach-Zehnder干涉仪BOTDR系统   总被引:10,自引:4,他引:6  
报道了新型的分布式传感测量布里渊光时域反射(BOTDR)系统.布里渊散射频移和强度均依赖于温度和应变,因此,BOTDR利用光纤中的自发布里渊散射作为测量信号可以实现分布式温度和应变测量.在BOTDR中,光源采用窄谱半导体激光器,并由声光调制器调制成脉冲光,经掺铒光纤放大器放大后,注入测试光纤以产生自发布里渊散射.利用双通Mach-Zehnder干涉仪分离光纤背向散射中的自发布里渊散射与瑞利散射信号,实现了自发布里渊散射的直接检测.实验结果表明基于全光纤Mach-Zehnder干涉仪BOTDR方案是可行的.  相似文献   

17.
提出了基于空间干涉成像的多芯光纤芯间群延时差的测量方法。用CCD记录不同波长下的空间干涉图,利用干涉图中所有像素点的干涉信息构建三维空间干涉光谱,并通过光谱分析可得芯间群延时差。搭建了基于空间干涉成像的多芯光纤芯间群延时差测量实验装置,测量了沟槽辅助型弱耦合七芯光纤芯间群延时差。该方法的测量装置简单,测量精度可达10~(-4)ps/m,不仅可测量两芯间的延时差还可同时测量任意相邻的多个芯的芯间延时差。测量时使用三维调节台加CCD的组合使得待测纤芯的选择激发更加简单。此外,还研究了多芯光纤芯间延时差的弯曲依赖性,结果显示,随着弯曲半径的增大,多芯光纤芯间群延时差不断减小。  相似文献   

18.
为了实现温度和应变同时测量,本文设计了一种基于多模干涉的光纤温度和应变传感器.该传感器利用光纤熔接机将一段细保偏光纤和一段细芯光纤错位熔接后引入萨格纳克环中而制成.由于光纤错位和模场失配,传感器内存在偏振模干涉和纤芯模-包层模干涉.对不同温度和应变作用下采集到的传感器透射谱进行滤波处理,可提取两种干涉对应的透射谱.基于透射谱中两个不同波谷的温度和应变灵敏度建立同时测量矩阵,即可实现温度和应变的同时测量.实验数据显示该传感器的温度和应变分辨率分别为0.30℃和13.50με.本实验可以作为物理和光电相关专业本科生物理创新实验,帮助大学生掌握光纤传感原理、实验技能和数据处理与分析方法.  相似文献   

19.
提出了一种损耗型矢量布里渊光时域分析光纤传感技术,通过构建基于外差检测的模拟实验系统测量受激布里渊散射幅度损耗谱和相移谱,实现了50m传感光纤的温度测量。结果表明,通过测量相移谱获得的布里渊频移与通过测量幅度损耗谱获得的布里渊频移基本一致,且均与温度呈良好的线性关系;由损耗型矢量布里渊光时域分析技术获得的布里渊频移的温度系数为1.16 MHz/℃,与传统布里渊光时域分析技术获得的1.2 MHz/℃具有良好的一致性。根据理论和实验结果,分析了损耗型矢量布里渊光时域分析光纤传感技术的优势。  相似文献   

20.
在基于布里渊拍频谱功率测量的分布式光纤传感中,提出对多模声波导结构光纤的应变与温度系数进行理论计算的方法。布里渊拍频谱的功率与光纤的有效折射率、杨氏模量、泊松比、声光有效面积等参数有关,这些参数会随光纤中应变和温度改变。通过建立应变和温度与布里渊拍频谱功率之间关系,可在已知光纤的折射率分布的情况下,从理论上推导出多模声波导结构光纤的布里渊拍频功率-应变系数和布里渊拍频功率-温度系数。以大有效面积光纤(LEAF)为例,计算了光纤的应变和温度系数,并与实验测量结果进行比较。结果表明,使用该方法得到的理论计算结果与实验值相吻合,验证了该计算方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号