首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP-THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning.  相似文献   

2.
Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS‐b‐PAA and PS‐b‐P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.‐%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution.

  相似文献   


3.
There is increasing interest in the usefulness of block copolymer micelles as drug delivery vehicles. However, their subcellular distribution has not been explored extensively, mostly because of the lack of adequately labeled block copolymers. In a previous study, we showed that fluorescently labeled block copolymer micelles entered living cells and co-localized with cytoplasmic organelles selectively labeled with fluorescent dyes. The details of the observed co-localizations were, however, limited by the resolution of the fluorescence approach, which is ca. 500 nm. Using transmission electron microscopy (TEM), we established time- and concentration-dependent subcellular distributions of gold-labeled micelles within human embryonic kidney (HEK 293) cells and human lung carcinoma (A549) cells. Gold particles were incorporated into poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP21-b-PEO45) micelles. Data from dynamic light scattering (DLS) and TEM analyses revealed that the sizes of the gold particles ranged from 4 to 8 nm. The cells survived up to 24 h in the presence of low gold-labeled micelle concentrations (0.73 microg/mL), but cell death occurred at higher concentrations (i.e., kidney cells are more susceptible than lung cells). Over 24 h periods of equivalent exposure, lung cells internalized significantly more gold-incorporated micelles than kidney cells. Although micelles were added to the cell culture media as dispersed colloidal particles, the presence of serum in these media caused aggregation. These aggregates occurred mainly close to the cell plasma membrane at early times (5-10 min); however, at later times (24 h) aggregated particles were seen inside endosomes and lysozomes. Thus, gold-incorporated (labeled) micelles can serve as a valuable extension of the fluorescence approach to visualizing the localization of micelles in subcellular compartments, improving the resolution by at least 20-fold.  相似文献   

4.
Small-angle neutron and X-ray scattering are techniques, which are frequently used for studying the structure and interactions of block copolymer micelles. Recent developments of models for the analysis of small-angle scattering data are reviewed. The most recent models, based on Monte Carlo simulations, are able to provide information on shape, aggregation number, polydispersity, core size, core solvation, corona shape/size, and on the interactions between the chains in the corona.  相似文献   

5.
Block copolymers dissolved in selective solvent often self-assemble. We review the use of NMR to study this process and to characterize the aggregates formed. We stress the need to consider the polydispersity of the polymers and the fact that the increase in NMR relaxation rates observed upon aggregation can be assigned to contributions from the block copolymer micelle tumbling.  相似文献   

6.
Using poly(acrylic acid)-b-poly(methyl acrylate)-b-polystyrene (PAA-b-PMA-b-PS) triblock copolymers or a mixture of different molecular weight PAA-b-PS diblock copolymers, stacks of polymeric micellar assemblies, such as disks and Y-shaped cylinders, were formed through intermicellar interactions. Whereas micelles hierarchically stacked together, micellar interactions within the stack defined a uniform micelle geometry and size for up to micrometers in length. The kinetic pathway dependence and stability of the stacked assemblies were studied, and possible intermicellar interactions between micelles within the stacks are proposed.  相似文献   

7.
Microwave-assisted polymerization has been utilized to synthesize amphiphilic poly(2-ethyl-2-oxazoline-block-2-"soy alkyl"-2-oxazoline) diblock copolymers (PEtOx-PSoyOx). The amphiphilic block copolymers have been used to prepare aqueous spherical micelles consisting of a PEtOx corona and a PSoyOx core, which have been further cross-linked by UV irradiation. The morphology of these cross-linked micelles has been shown to reversibly change from spheres to short rods referred to as rice grains whenever the micelles were transferred from water into acetone, a nonselective solvent for the constituent blocks. This morphological transition has been attributed to the swelling of the slightly cross-linked PSoyOx core.  相似文献   

8.
Two distinct diblock copolymers, poly(styrene-b-isoprene) (SI) and poly(styrene-b-dimethylsiloxane) (SD), were codissolved at various concentrations in the polystyrene selective solvent diethyl phthalate. Two SI diblocks, with block molar masses of 12,000-33,000 and 30,000-33,000, and two SD diblocks, with block molar masses of 19,000-6000 and 16,000-9000, were employed. The size ratio of the smaller SD micelles (S) to the larger SI micelles (L) varied from approximately 0.5 to 0.6, based on hydrodynamic radii determined by dynamic light scattering on dilute solutions containing only one polymer component. Due to incompatibility between the polyisoprene and polydimethylsiloxane blocks, a binary mixture of distinct SI and SD micelles was formed in each mixed solution, as confirmed by cryogenic transmission electron microscopy. When the total concentration of polymer was increased to 20-30%, the micelles adopted a superlattice structure. Small angle X-ray scattering revealed the lattice to be the full LS13 superlattice (space group Fm3c) in all cases, with unit cell dimensions in excess of 145 nm. A coexistent face-centered cubic phase composed of SD micelles was also observed when the number ratio of S to L micelles was large.  相似文献   

9.
We have used ultra-small-angle scattering (USANS) and fluorescence microscopy to demonstrate the existence of a nonfractal large-scale structure in attractive micellar gels of poly(styrene)-poly(acrylic acid) block copolymers, which have some characteristics of attractive colloidal glasses. The nature of the large-scale structure appears to depend systematically on the strength of attraction. Our systems display scattering that follows I approximately q(x) in the low q regime, with x varying from approximately -3 to -4 as the strength of attraction is decreased. This scattering behavior appears to be the result of surface scattering from large, highly polydisperse aggregates with rough interfaces.  相似文献   

10.
An out line and summary of literature studies on interactions between different types of amphiphilic copolymer micelles with surfactants has been given. This field of research is still emerging and it is difficult presently to make generalisations on the effects of surfactants on the copolymer association. The effects are found to be varied depending upon the nature and type of hydrophobic (hp) core and molecular architecture of the copolymers and the hydrocarbon chain length and head group of surfactants. The information available on limited studies shows that both anionic and cationic surfactants (in micellar or molecular form) equally interact strongly with the associated and unassociated forms of copolymers. The beginning of the interaction is typically displayed as critical aggregation concentration (CAC), which lies always below the critical micelle concentration of the respective surfactant. The surfactants first bind to the hydrophobic core of the copolymer micelles followed by their interaction with the hydrophilic (hl) corona parts. The extent of binding highly depends upon the nature, hydropobicity of the copolymer molecules, length of the hydrocarbon tail and nature of the head group of the surfactant. The micellization of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO)–poly(ethylene oxide) was found to be suppressed by the added surfactants and at higher surfactant concentrations, the block copolymer micelles get completely demicellized. This effect was manifested itself in the melting of liquid crystalline phases in the high copolymer concentrations. However, no such destabilization was found for the micelles of polystyrene (PS)–poly(ethylene oxide) copolymers in water. On the contrary, the presence of micellar bound surfactant associates resulted in to large super micellar aggregates through induced intra micellar interactions. But with the change in the hydrophobic part from polystyrene to poly(butadiene) (PB) in the copolymer, the added surfactants not only reduced the micellar size but also transformed cylindrical micelles to spherical ones. The mixtures in general exhibited synergistic effects. So varied association responses were noted in the mixed solutions of surfactants and copolymers.  相似文献   

11.
Four amphiphilic poly((1,2-butadiene)-block-ethylene oxide) (PB-PEO) diblock copolymers were shown to aggregate strongly and form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]). The universal micellar structures (spherical micelle, wormlike micelle, and bilayered vesicle) were all accessed by varying the length of the corona block while holding the core block constant. The nanostructures of the PB-PEO micelles formed in an ionic liquid were directly visualized by cryogenic transmission electron microscopy (cryo-TEM). Detailed micelle structural information was extracted from both cryo-TEM and dynamic light scattering measurements, with excellent agreement between the two techniques. Compared to aqueous solutions of the same copolymers, [BMIM][PF(6)] solutions exhibit some distinct features, such as temperature-independent micellar morphologies between 25 and 100 degrees C. As in aqueous solutions, significant nonergodicity effects were also observed. This work demonstrates the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid, with potential applications in many arenas.  相似文献   

12.
In this paper we present the effect of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer micelles and their hydrophobicity on the stabilization of gold nanoparticles. Gold nanoparticles were prepared by a method developed by Sakai et al. (Sakai, T.; Alexandridis, P. Langmuir 2004, 20, 8426). An absorption centered at 300-400 nm in time-dependent UV spectra provided evidence that the very first step of the synthesis was to form primary gold clusters. Then the gold clusters grew in size and were stabilized by block copolymer micelles. The stabilization capacities of the micelles were modulated by tuning the block copolymer concentration and composition and by adding salts. With good stabilization, gold particles were spherical and uniform in size with a diameter of 5-10 nm. Otherwise they were aggregates with irregular shapes such as triangular, hexagonal, and rodlike. The presence of a small amount of NaF significantly increased the stabilization capacity of the micelles and consequently modified the quality of the gold particles. Using FTIR and 1H NMR spectroscopy, micellization of the block copolymers and hydrophobicity of the micelles were proven very important for the stabilization. A higher hydrophobicity of the micelle cores was expected to favor the entrapment of primary gold clusters and the stabilization of gold nanoparticles.  相似文献   

13.
We investigate the solubilization of 2-nitrodiphenylamine, a hydrophobic but polar dye molecule, in aqueous solutions of polystyrene(310)-b-poly(acrylic acid)(47) micelles. The solubilization capacity of the micelles, which consist of a polystyrene core and poly(acrylic acid) corona, and the micelle-water partition coefficient are evaluated as a function of the solubilizate concentration. The solubilization isotherm shows a nonlinear behavior, and the partition coefficient, instead of being constant, is strongly dependent on the dye concentration. These results are explained by treating solubilization as a binding process, and by fitting the data to a Langmuir adsorption model. In addition, we examine the locus of solubilization of 2-nitrodiphenylamine using its solvatochromic properties and solubility in model solvents, and we identify the micellar interface as the solubilization site. Confirmatory studies, including the dependence of solubilization on the interfacial area of the aggregates, the role of the poly(acrylic acid) corona chains in stabilizing the solubilized molecules, and the effect of the solubilizate structure on the extent of incorporation, were also conducted. The results, consistent with surface localization, show that solubilization is dependent on the interfacial area of the aggregates, and on the affinity of the solubilizate for the micellar interface.  相似文献   

14.
Diblock copolymer micelles comprising cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMA) coronas and hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) cores are used as nanosized templates for the deposition of silica from aqueous solution at pH 7.2 and 20 degrees C. Both noncross-linked and shell cross-linked (SCL) micelles can be coated with silica without loss of colloid stability. Under optimized conditions, the silica deposition is confined to the partially quaternized cationic PDMA chains, leading to hybrid copolymer-silica particles of around 35 nm diameter with well-defined core-shell morphologies. 1H NMR studies confirmed that the PDPA cores of these copolymer-silica particles became protonated at low pH and deprotonated at high pH, which suggests possible encapsulation and controlled release applications. Moreover, in situ silica deposition effectively stabilizes the PDPA-PDMA micelles, which remain intact on lowering the solution pH (whereas the original noncross-linked PDPA-PDMA micelles dissociate in acidic solution). This suggests a convenient route to silica-stabilized SCL micelles under mild conditions.  相似文献   

15.
以胆酸为引发剂,用辛酸亚锡催化丙交酯开环聚合合成星型CA-PLA。利用DCC为脱水剂,将不同分子量的端羧基化PEG与星型CA-PLA偶联,合成一系列以胆酸为核的星形两亲性嵌段共聚物,用透析法制备共聚物胶束,并用TEM和DLS研究胶束的性质。合成了分子量为6000和12000的两种CA-PLA,其分子量可以通过胆酸羟基与丙交酯的比例进行控制。将分子量2000和5000的PEG分别与两种CA-PLA偶联,合成了四种星型CA-PLA-PEG嵌段共聚物。共聚物胶束形貌为均匀的球形,粒径为20-40nm,且随共聚物中PLA链段分子量的增加而增大,随PEG链段分子量的增加而减小。临界胶束浓度(CMC)低于同等链段长度的线型PLA-PEG嵌段共聚物胶束。  相似文献   

16.
Dissipative particle dynamics (DPD) was used to simulate the formation and stabilization of gold nanoparticles in poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer micelles. Primary gold clusters that were experimentally observed in the early stage of gold nanoparticle formation were modeled as gold bead in DPD simulation. It showed that gold beads were wrapped by the block copolymer and aggregated into spherical particles inside the micelles and forming stable Pluronic–gold colloids with two-layer structures. Increasing Pluronic concentration, molecular weight, and PPO block length led to the formation of more uniform and more stable gold nanoparticles. Density profiles of water beads suggested that the micelles, especially the hydrophobicity of the micellar cores, played an important role in stabilizing gold nanoparticles. Dynamic process indicated that the formation of gold nanoparticles was controlled by the competition between aggregation of primary gold clusters and the stabilization by micelles of block copolymers.. The DPD simulation results of gold–copolymer–water system agree well with previous experiments, while more structure information on microscopic level could be provided.  相似文献   

17.
 The preparation and properties of Co nanoparticles in polystyrene(PS)-poly-4-vinyl-py-ridine(PVP) micelles were studied. Elementary Co was generated by two methods: (i) by reduction of micelles loaded with CoCl2, and (ii) by thermal decomposition of Co2(CO)8 in micel-lar solutions of such block copolymers. Co particles formed by both processes are effectively stabilized by the block copolymer matrix and do not aggregate. For CoCl2 as a Co-source, the formed particles have a size less than 1 nm. Thermal treatment of such dried polymers at 200 °C for 2 h leads to spherical particles of 3–5 nm in size. The polymeric hybrid materials prepared in this way display remarkably high values of magnetization at rather low Co contents in the polymer, i.e., we obtain a tenfold increase of the specific magnetization density. Co2(CO)8 as a Co source, results in a more complex behavior. Co2(CO)8 dissolves in the solvent as well as in the micelle core where it is converted to an cationic–anionic complex involving the 4-VP units. The shape and size of the Co nanoparticles formed by thermolysis can be controlled by the balance of 4-VP/Co and can be varied from spherical particles in the limit of lower Co loads being mainly attached to the micelle core to a star-like and cubic morphology in case of excess of Co2(CO)8. Both superparamagnetic and ferromagnetic materials can be prepared. For ferromagnetic samples coercive force varies from 250 to 475 Oe depending on Co content and polymer sample. Received : 27 September 1996 Accepted: 22 November 1996  相似文献   

18.
The solubilization sites provided by micelles formed by a diblock copolymer with one neutral hydrophobic block, polystyrene, and one charged hydrophilic block, poly(acrylic acid) or poly(methacrylic acid), have been studied by fluorescence quenching of pyrene by polar and nonpolar quenchers. Pyrene solubilized into these micelles is distributed between the inner corona and the micelle core. The fraction of pyrene residing in the inner corona is almost unity for star micelles, where the corona-forming blocks are larger than the core-forming blocks, and around 0.5 for crew-cut micelles where the opposite situation prevails. The kinetics of the quenching process depends on the pyrene location, i.e. is static in the micelle core, and largely dynamic in the inner corona at low quencher concentration. The rate constants for fluorescence quenching by nitromethane are shown to increase with increasing pH.  相似文献   

19.
Small iron oxide and Co-doped iron oxide nanoparticles (NPs) were synthesized in a commercial amphiphilic block copolymer, poly(ethylene oxide)-b-poly(methacrylic acid) (PEO 68-b-PMAA8), in aqueous solutions. The structure and composition of the micelles containing guest molecules (metal salts) or NPs (metal oxides) were studied using transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The enlarged micelle cores after incorporation of metal salts are believed to be formed by both PMAA blocks containing metal species and penetrating PEO chains. The nanoparticle size distributions in PEO 68-b-PMAA8 were determined using small-angle X-ray scattering (SAXS) in bulk. Two independent methods for SAXS data interpretation for comprehensive analysis of volume distributions of metal oxide NPs showed presence of both small particles and larger entities containing metal species which are ascribed to organization of block copolymer micelles in bulk. The magnetometry measurements revealed that the NPs are superparamagnetic and their characteristics depend on the method of the NP synthesis. The important advantage of the PEO 68-b-PMAA8 stabilized magnetic nanoparticles described in this paper is their remarkable solubility and stability in water and buffers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号