首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerization of butadiene (Bd) with Co(acac)3 in combination with methylaluminoxane (MAO) was investigated. The polymerization of Bd with Co(acac)3‐MAO catalysts proceeded to give cis‐1,4 polymers (94 – 97%) bearing high molecular weights (40 × 104) with relatively narrow molecular weight distributions (Mw's/Mn's). The molecular weight of the polymers increased linearly with the polymer yield, and the line passed through an original point. The polydispersities of the polymers kept almost constant during reaction time. This indicates that the microstructure and molecular weight of the polymers can be controlled in the polymerization of Bd with the Co(acac)3‐MAO catalyst. The effects of reaction temperature, Bd concentration, and the MAO/Co molar ratio on the cis‐1,4 microstructure and high molecular weight polymer in the polymerization of Bd with Co(acac)3‐MAO catalyst were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2793–2798, 2001  相似文献   

2.
MAO/CpTiCl3 is an active catalyst for the polymerization of various types of 1,3-dienes. Butadiene, (E) - and (Z) −1,3-pentadiene, (E) −2-methyl-1,3-pentadiene and 2,3-dimethylbutadiene yield, at room temperature, polymers with a cis-1,4 or a mixed cis/1,2 structure. 4-Methyl-1,3-pentadiene and (E,E) −2,4-hexadiene give, respectively, a 1,2 syndiotactic and a trans-1,4/1,2 polymer. MAO/CpTiCl2·2THF and MAO/(CpTiCl2)n are less active than the CpTiCl3 catalyst, but give the same type of polymers. A change of stereospecificity with temperature was observed in the polymerization of (Z)-1,3-pentadiene: a cis-1,4 isotactic polymer was obtained at +20°C, and a crystalline 1,2 syndiotactic polymer at −20°C. This effect was attributed to a different mode of coordination of the monomer, which is cis-η4 at +20°C and may be trans-η2 at −20°C. Results obtained with catalysts from CpTi(OBu)3 and Ti(OBu)4 are reported for comparison. An interpretation is given of the formation of cis-1,4 isotactic poly(2-methylpentadiene) and of 1,2 syndiotactic poly(4-methylpentadiene), as well as of syndiotactic polystyrene.  相似文献   

3.
The copolymerization of styrene (St) with a styrene‐terminated polyisoprene macromonomer (SIPM) by a nickel(II) acetylacetonate [Ni(acac)2] catalyst in combination with methylaluminoxane (MAO) was investigated. A SIPM with a high terminal degree of functionalization and a narrow molecular weight distribution was used for the copolymerization of St. The copolymerization proceeded easily to give a high molecular weight graft copolymer. After fractionation of the resulting copolymer with methyl ethyl ketone, the insoluble part had highly isotactic polystyrene in the main chain and polyisoprene in the side chain. Lowering the MAO/Ni molar ratio and the polymerization temperature were favorable to producing isospecific active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1241–1246, 2000  相似文献   

4.
The polymerization of vinyl chloride (VC) with half‐titanocene /methylaluminoxane (MAO) catalysts is investigated. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst (Cp* = η5‐pentamethylcyclopentadienyl) afforded high‐molecular‐weight poly(vinyl chloride) (PVC) in good yields, although the polymerization proceeded at a slow rate. With the Cp*TiCl3/MAO catalyst, the polymer was also obtained, but the polymer yield was lower than that with the Cp*Ti(OCH3)3/MAO catalyst. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst was influenced by the MAO/Ti mole ratio and reaction temperature, and the optimum was observed at the MAO/Ti mole ratio of about 10. The optimum reaction temperature of VC with the Cp*Ti(OCH3)3/MAO catalyst was around 20 °C. The stereoregularity of PVC obtained with the Cp*Ti(OCH3)3/MAO catalyst was different from that obtained with azobisisobutyronitrile, but highly stereoregular PVC could not be synthesized. From the elemental analyses, the 1H and 13C NMR spectra of the polymers, and the analysis of the reduction product from PVC to polyethylene, the polymer obtained with Cp*Ti(OCH3)3/MAO catalyst consisted of only regular head‐to‐tail units without any anomalous structure, whereas the Cp*TiCl3/MAO catalyst gave the PVC‐bearing anomalous units. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst did not inhibit even in the presence of radical inhibitors such as 2,2,6,6,‐tetrametylpiperidine‐1‐oxyl, indicating that the polymerization of VC did not proceed via a radical mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 248–256, 2003  相似文献   

5.
The catalytic behavior of binary systems derived from AIR3 and alkali metal hydroxide in a molar ratio of 1 to 0.5 in situ for stereospecific polymerization of acetaldehyde was studied for the purpose of preparation of isotactic polyacetal. The polymer obtained can be readily stretched to a film. The polymerization proceeds slowly (in ~20 hr). The polymer yield and stereospecificity of the polymerization by AlEt3–LiOH (1:0.5) catalyst were not significantly changed by the nature of solvent or dilution as far as studied. AlEt3–NaOH, AlEt3–KOH, AlEt3–CsOH, AliBu3–LiOH and AlMe3–LiOH in molar ratios of 1 to 0.5 behaved similarly. AlMe3–NaOH, AlMe3–KOH and AliBu3–NaOH also gave isotactic polymer of high stereoregularity but in lower yields.  相似文献   

6.
Abstract

N,N-Dimethyl-, diethyl-, and dipropylacrylamides were polymerized with 1,1-bis(4′-trimethylsilylphenyl)-3-methylpentyllithium (I) in the presence and absence of diethylzinc in THF. Although the polymers produced with I in the absence of diethylzinc have rather broad molecular weight distributions, the addition of diethylzinc to the polymerization systems causes narrow molecular weight distributions of the polymers. The addition of diethylzinc also affect the stereospecificities of the polymers obtained. The poly(N,N-diethylacrylamide) produced with I/diethylzinc (molar ratio of 1/3-15) is highly syndiotactic, while the one obtained with I is isotactic. The configuration of the poly(N,N-dimethylacrylamide) is changed from isotactic to syndio and heterotactic rich by the addition of diethylzinc to the polymerization mixture. Little effect of diethylzinc is observed on the stereospecificity of the polymerization of N,N-dipropylacrylamide. The stoichiometric additive effect of Et2Zn toward the initiator in the polymerization of DEAA suggests that the coordination of Et2Zn aggregates with the propagating carbanionic species narrows the molecular weight distribution and controls the tacticity of the polymer.  相似文献   

7.
Polymerization of 2‐pentene with [ArN?C(An)C(An)·NAr)NiBr2 (Ar?2,6‐iPr2C6H3)] ( 1‐Ni) /M‐MAO catalyst was investigated. A reactivity between trans‐2‐pentene and cis‐2‐pentene on the polymerization was quite different, and trans‐2‐pentene polymerized with 1‐Ni /M‐MAO catalyst to give a high molecular weight polymer. On the other hand, the polymerization of cis‐2‐butene with 1‐Ni /M‐MAO catalyst did not give any polymeric products. In the polymerization of mixture of trans‐ and cis‐2‐pentene with 1‐Ni /M‐MAO catalyst, the Mn of the polymer increased with an increase of the polymer yields. However, the relationship between polymer yield and the Mn of the polymer did not give a strict straight line, and the Mw/Mn also increased with increasing polymer yield. This suggests that side reactions were induced during the polymerization. The structures of the polymer obtained from the polymerization of 2‐ pentene with 1‐Ni /M‐MAO catalyst consists of ? CH2? CH2? CH(CH2CH3)? , ? CH2? CH2? CH2? CH(CH3)? , ? CH2? CH(CH2CH2CH3)? , and methylene sequence ? (CH2)n? (n ≥ 5) units, which is related to the chain walking mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2858–2863, 2008  相似文献   

8.
Polymerization of styrene with the neodymium phosphonate Nd(P507)/H2O/Al(i-Bu)3 catalytic system has been examined. The polymer obtained was separated into a soluble and an insoluble fraction by 2-butanone extraction. 13C-NMR spectra indicate that the insoluble fraction is isotactic polystyrene and the soluble one is syndiotactic-rich atactic polystyrene. The polymerization features are described and discussed. The optimum conditions for the polymerization are as follows: [Nd] = (3.5–5.0) × 10−2 mol/L; [styrene] = 5 mol/L; [Al]/[Nd] = 6–8 mol/mol; [H2O]/[Al] = 0.05–0.08 mol/mol; polymerization temperature around 70°C. The percent yield of isotactic polystyrene (IY) is markedly affected by catalyst aging temperature. With increase of the aging temperature from 40 to 70°C, IY increases from 9% to 48%. Using AlEt3 and Al(i-Bu)2H instead of Al(i-Bu)3 decreases the yield of isotactic polystyrene. Different neodymium compounds give the following activity order: Nd(P507)3 > Nd(P204)3 > Nd(OPri)3 > NdCl3 + C2H5OH > Nd(naph)3. With Nd(naph)3 as catalyst, only atactic polystyrene is obtained. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1773–1778, 1998  相似文献   

9.
Copolymerization of styrene (St) and isoprene (IP) with nickel(II) acetylacetonate [Ni(acac)2] and methylalumoxane (MAO) catalyst was investigated. It was found that the Ni(acac)2-MAO catalyst is effective for the copolymerization of St and IP. From the copolymerization of St (M1) and IP (M2) and IP (M2) with the Ni(acac)2-methylalumoxane catalyst, the monomer-reactivity ratios were determined to be r1 = 1,18 and r2 = 0,88, i.e., ideal copolymerization was found to proceed to give perfectly random copolymers without formation of any homopolymer. The microstructure of IP units in the copolymers exhibits high cis-1,4 contents.  相似文献   

10.
Copolymerization of styrene (St) and butadiene (Bd) with nickel(II) acetylacetonate [Ni(acac)2]-methylaluminoxane (MAO) catalyst was investigated. Among the metal acetylacetonates [Mt(acac)x] examined, Ni(acac)2 showed a high activity for the copolymerization of St and Bd giving copolymers having high cis-1,4-microstructure in Bd units in the copolymer. The effect of alkylaluminum as a cocatalyst on the copolymerization of St and Bd with the Ni(acac)2-MAO catalyst was observed, and MAO was found to be the most effective cocatalyst for the copolymerization. The monomer reactivity ratios for the copolymerization of St and Bd with the Ni(acac)2-MAO catalyst were determined to be rSt = 0.07 and rBd = 3.6. Based on the obtained results, it was presumed that the random copolymers with high cis-1,4-microstructure in Bd units could be synthesized with the Ni(acac)2-MAO catalyst without formation of each homopolymer. The polymerization mechanism with the Ni(acac)2-MAO catalyst was also discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3838–3844, 1999  相似文献   

11.
A series of nickel complexes, including Ni(acac)2, (C5H5)Ni(η3‐allyl), and [NiMe4Li2(THF)2]2, that were activated with modified methylaluminoxane (MMAO) exhibited high catalytic activity for the polymerization of methyl methacrylate (MMA) but showed no catalytic activity for the polymerization of ethylene and 1‐olefins. The resulting polymers exhibited rather broad molecular weight distributions and low syndiotacticities. In contrast to these initiators, the metallocene complexes (C5H5)2Ni, (C5Me5)2Ni, (Ind)2Ni, and (Me3SiC5H4)2Ni provided narrower molecular weight distributions at 60 °C when these initiator were activated with MMAO. Half‐metallocene complexes such as (C5H5)NiCl(PPh3), (C5Me5)NiCl(PPh3), and (Ind)NiCl(PPh3) produced poly(methyl methacrylate) (PMMA) with much narrower molecular weight distributions when the polymerization was carried out at 0 °C. Ni[1,3‐(CF3)2‐acac]2 generated PMMA with high syndiotacticity. The NiR(acac)(PPh3) complexes (R = Me or Et) revealed high selectivity in the polymerization of isoprene that produced 1,2‐/3,4‐polymer at 0 °C exclusively, whereas the polymerization at 60 °C resulted in the formation of cis‐1,4‐rich polymers. The polymerization of ethylene with Ni(1,3‐tBu2‐acac)2 and Ni[1,3‐(CF3)2‐acac]2 generated oligo‐ethylene with moderate catalytic activity, whereas the reaction of ethylene with Ni(acac)2/MMAO produced high molecular weight polyethylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4764–4775, 2000  相似文献   

12.
o-Methoxystyrene was polymerized with n-butyllithium (n-BuLi), Na naphthalene, and K dispersion as initiators in tetrahydrofuran (THF) and toluene. The stereoregularity of the polymer was investigated by means of the NMR spectroscopy. The methoxy resonance of the spectrum split into ten components due to the tactic pentads. It was found by x-ray examination that the polymer obtained by n-BuLi in toluene at ?45°C was crystalline and highly isotactic. In THF, the stereospecificity of the polymerization was independent of the initiator, and the isotacticity of the polymer increased with increasing reaction temperature. In toluene, the stereospecificity depended on the initiator; i.e., n-BuLi gave a polymer with higher isotacticity than that given by phenylsodium. The fraction of isotactic triad of the polymer obtained by n-BuLi in toluene at ?78°C was more than 90%, but 50% at 50°C. The presence of ca. 1% THF in toluene led to a steep decrease in the isotacticity even at ?78°C. The tacticity of the polymer given by Na naphthalene was not affected by the existence of NaB(C6H5)4 in THF. The polymerization in THF could be explained by Bovey's “single σ” process, while a penultimate effect was observed in the polymerization by n-BuLi in toluene.  相似文献   

13.
Stereospecific polymerization of styrene was catalyzed by homogeneous neodymium phosphonate [Nd(P507)3]-H2O-Al(i-Bu)3 catalytic system. The polymer was separated into isotactic polystyrene and atactic polystyrene by extracting the latter with boiling 2-butanone. The conversion of styrene and the yield of isotactic polystyrene (IY) were influenced by the [H2O]/[Al(i-Bu)3] mole ratio and the solvent polarity. The reaction is first order with respect to monomer at 70°C.  相似文献   

14.
The supported metallocene catalysts were obtained on the layered silicate montmorillonite (MMT), using AlMe3 and AliBu3 for synthesis of alkylaluminoxane directly on a support surface, followed by metallocene supporting. It was shown that the MMT-H2O/AliBu3 forms with ansa-Zr-cenes of C1 and C2-symmetry the significantly more active supported metal-alkyl complexes in propene polymerization, than MMT-H2O/AlMe3. The MMT-H2O/AliBu3 is the effective activator of the ansa-Hf-cenes, in contrast to MAO and MMT-H2O/AlMe3, giving the high active supported catalysts for synthesis of isotactic and elastic polypropene. The character of influence of metallocene fixation on support on the isotactic pentad [mmmm] content in polymer, compared to homogeneous analogues, depends on the metallocene nature. The introduction of borate Ph3CB(C6F5)4 in the case of both Zr-cene and Hf-cene catalysts increases significantly the activity at the reduced ratio of Al/Zr, Hf (100–500 instead of 2000–3000) and stabilizes the catalytic complexes.  相似文献   

15.
By using standard bromination conditions, the insoluble 1,2,1,2-polypropadiene (formed by Ni(acac)2 or Co(acac)2 or 3, C3H4, (iBu)3Al catalysts) is transformed into a soluble bromopolypropadiene. Using this technique, determination of molecular weight becomes possible. It was found that the molecular weight increases with polymerization time until a steady value is reached. As the polymer yield continues to increase when a constant molecular weight has been reached, chain transfer must occur. The molecular weight of polybromopropadiene was independent of the concentrations of the catalyst components. From experiments with crosslinked polymers and from theoretical considerations, it was deduced that the low solubility of the original 1,2,1,2-polypropadiene is due to its high crystallinity.  相似文献   

16.
The present study involves the synthesis of polyaniline (PANI) and its composite with nickel bis(acetylacetonate) complex (Ni(acac)2) via chemical oxidative polymerization method. PANI-Ni(acac)2 composite was characterized by energy dispersive X-rays (EDX), fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Luminescence study was performed by UV–visible and fluorescence techniques. Relative fluorescence quantum yield of composite is a few orders of magnitude higher than pure PANI. The high fluorescence quantum yield of composite is probably due to greater chances of exciton formation and subsequent radiative decay to the ground state. Differential scanning calorimetric analysis (DSC) revealed higher thermal stability of composite than pure PANI, thereby allowing its use in devices which run at higher temperatures. On increasing the applied magnetic field, magnetic moment increases in both Ni(acac)2 complex and PANI-Ni(acac)2 composite, unlike to that in pure PANI. Thus, the present study holds promise for thermal purposes, luminescence properties and magnetic applications of the polyaniline composite.  相似文献   

17.
The original Sasol catalytic system for ethylene tetramerization is composed of a Cr source, a PNP ligand, and MAO (methylaluminoxane). The use of expensive MAO in excess has been a critical concern in commercial operation. Many efforts have been made to replace MAO with non‐coordinating anions (e.g., [B(C6F5)4]?); however, most of such attempts were unsuccessful. Herein, an extremely active catalytic system that avoids the use of MAO is presented. The successive addition of two equivalent [H(OEt2)2]+[B(C6F5)4]? and one equivalent CrCl3(THF)3 to (acac)AlEt2 and subsequent treatment with a PNP ligand [CH3(CH2)16]2C(H)N(PPh2)2 ( 1 ) yielded a complex presumably formulated as [ 1 ‐CrAl (acac)Cl3(THF)]2+[B(C6F5)4]?2, which exhibited high activity when combined with iBu3Al (1120 kg/g‐Cr/h; ~4 times that of the original Sasol system composed of Cr (acac)3, iPrN(PPh2)2, and MAO). Via the introduction of bulky trialkylsilyl substituents such as –SiMe3, –Si(nBu)3, or –SiMe2(CH2)7CH3 at the para‐position of phenyl groups in 1 (i.e., by using [CH3(CH2)16]2C(H)N[P(C6H4p‐SiR3)2]2 instead of 1 ), the activities were dramatically improved, i.e., tripled (2960–3340 kg/g‐Cr/h; more than 10 times that of the original Sasol system). The generation of significantly less PE (<0.2 wt%) even at a high temperature is another advantage achieved by the introduction of bulky trialkylsilyl substituents. NMR studies and DFT calculations suggest that increase of the steric bulkiness on the alkyl‐N and P‐aryl moieties restrict the free rotation around (alkyl)N–P (aryl) bonds, which may cause the generation of more robust active species in higher proportion, leading to extremely high activity along with the generation of a smaller amount of PE.  相似文献   

18.
Stereospecificity of tetrabenzyltitanium and its halogeno-derivatives in the polymerization of butadiene has been investigated. The content of 1,2-units decreases while the content of 1,4-cis-units increases in the resulting polybutadiene for the series (C6H5CH2)4Ti, (C6H5CH2)3TiCl, (C6H5CH2)3TiBr, (C6H5CH2)3Til. Tribenzyltitanium iodide exhibits high stereospecificity for the formation of 1,4-cis-units and their content reaches 94–97%. By determining the number of benzyl groups linked with titanium at different degrees of conversion, it has been shown that the active centre formed from tetrabenzyltitanium contains three benzyl groups and one polymer chain. Two benzyl groups, one iodine atom and one polymer chain are attached to a titanium atom in the active centre for the case of tribenzyltitanium iodide. Electron donors sharply change the stereospecificity of tribenzyltitanium iodide: the content of 1,2-units in the polymer rises to 68%.  相似文献   

19.
The neutral octahedral nickel complex (PhC(NSiMe3)NC(Ph)CHSiMe3)Ni(acac)(TMEDA) (7), has been synthesized and characterized including X-ray diffraction analysis. The complex was formed by the reaction of Ni(acac)2(TMEDA) with the lithium salt of the corresponding β-diketiminate ligand. The formation of the benzamidinate motif from the corresponding β-diketiminate is a consequence of a retro-Brook isomerization that is operative only at the nickel centre. A plausible mechanism for the metal mediated isomerization is proposed. When complex 7 was activated with MAO it showed a good catalytic activity for the addition polymerization of norbornene. Furthermore, this catalytic system has been found to oligomerize ethylene to a mixture of butenes and hexenes with a high turnover frequency, η = 29,300 h−1, when the reaction is performed in dichloromethane.  相似文献   

20.
Monomer-isomerization polymerization of cis-2-butene (c2B) with Ziegler–Natta catalysts was studied to find a highly active catalyst. Among the transition metals [TiCl3, TiCl4, VCl3, VOCl3, and V (acac)3] and alkylauminums used, TiCl3? R3Al (R = C2H5 and i-C4H9) was found to show a high-activity for monomer-isomerization polymerization of c2B. The polymer yield was low with TiCl4? (C2H5)3Al catalyst. However, when NiCl2 was added to this catalyst, the polymer yield increased. With TiCl3? (C2H5)3Al catalyst, the effect of the Al/Ti molar ratio was observed and a maximum for the polymer yields was obtained at molar ratios of 2.0–3.0, but the isomerization increased as a function of Al/Ti molar ratio. The valence state of titanium on active sites for isomerization and polymerization is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号