首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface molecular motions of amorphous polymeric solids have been directly measured on the basis of scanningviscoelasticity microscopic (SVM) and lateral force microscopic (LFM) measurements. SVM and LFM measurements werecarried out for films of conventional monodisperse polystyrene (PS) with sec-butyl and proton-terminated end groups atroom temperature. In the case of the number-average molecular weight, M_n, less than ca. 4.0×10~4, the surface was in a glass-rubber transition state even though the bulk glass transition temperature, T_g was far above room temperature, meaning thatthe surface molecular motion was fairly active compared with that in the bulk. LFM measurements of the, monodisperse PSfilms at various scanning rates and temperatures revealed that the time-temperature superposition was applicable to thesurface mechanical relaxation behavior and also that the surface glass transition temperature, T_g~σ, was depressed incomparison with the bulk one even though the magnitude of M_n was fairly high at 1.40×10~5. The surface molecular motionof monodisperse PS with various chain end groups was investigated on the basis of temperature-dependent scanningviscoelasticity microscopy (TDSVM). The T_g~σs for the PS films with M_n of 4.9×10~6 to 1.45×10~6 measured by TDSVMwere smaller than those for the bulk one, with corresponding M_ns, and the T_g~σs for M_ns smaller than ca. 4.0×10~4 were lowerthan room temperature (293 K). The active thermal molecular motion at the polymeric solid surface can be interpreted interms of an excess free volume near the surface region induced by the surface localization of chain end groups. In the case ofM_n=ca. 5.0×10~4, the T_g~σs for the α, ω-diamino-terminated PS (α,ω-PS(NH_2)_2) and α, ω-dicarboxy-terminated PS (α, ω-PS(COOH)_2) films were higher than that of the PS film. The change of T_g~σ for the PS film with various chain end groups canbe explained in terms of the depth distribution of chain end groups at the surface region depending on the relativehydrophobicity.  相似文献   

2.
Surface dynamics in monodisperse polystyrene films was examined by lateral force microscopy in conjunction with dynamic secondary ion mass spectroscopy. Glass transition temperature, Tg, at the surface was markedly lower than the corresponding bulk Tg. Also, it was shown that polymer chains present at the surface could diffuse even at a temperature below the bulk Tg. The surface depth, in which molecular motion was activated, was of the order of 5 nm.  相似文献   

3.
Lap shear and friction force measurements were carried out on a series of monodisperse polystyrene (PS) films below the corresponding glass‐transition temperatures. It showed that adhesion between the PS/PS interface was possible at the temperature below the bulk Tg, and the lower the molecular weight of PS, the lower the temperature at which the interfacial strength was detectable. The examination of a series of molecular weights indicated both the surface molecular motion and the magnitude of the interfacial strength were dependent on molecular weight and its distribution. And a steep increase of the friction force with increasing the test temperature was observed around 0 ∼ 30 °C. The contact angle of water versus molecular weight measurements also showed a transition at room temperature. The behavior observed in this study was supposed to be due to the increased molecular mobility, and was in good agreement with the measured surface transition temperatures by DSC. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 654–658, 2000  相似文献   

4.
The adsorption isotherms of water, oxygen, and hexane molecules at the surface of poly(vinylidene fluoride-co-trifluoroethylene) films 30 and 5 monolayers thick obtained by the Langmuir–Schaefer technique were measured at various temperatures using quartz crystal microbalance. An effect of a ferroelectric phase transition occurring at a temperatures from 363 to 388 K on the adsorption activity of the films of the both thicknesses was disclosed. The highest adsorption was observed at a temperature T 380 K. In the case of the superthin copolymer film 5 monolayers thick, one more maximum of the adsorbability was detected at T 300 K that corresponded to a low-temperature phase transition, which is typical of only the copolymer films thinner than 30 monolayers. The effects observed were explained by the facilitation of an adsorbate diffusion into the copolymer film upon its structural rearrangement caused by the phase transition. The results of this study allowed us to propose a new method for the determination of structural phase transitions based on studying isotherms of molecular adsorption from the gaseous phase.  相似文献   

5.
We have used a liquid dewetting method to investigate the glass transition temperature Tg of high molecular weight linear, long branched 3-arm star, and short branched 8-arm star polystyrene (PS) in the form of ultrathin films. The results of these dewetting experiments are consistent with prior studies of dewetting of linear PS films and show that, independent of molecular architecture, the glass transition temperature Tg reductions with decreasing film thickness, while important below about 20 nm, are weaker than those observed for linear PS supported on a rigid substrate and as well as those observed in freely standing films. The lack of a strong molecular architecture effect on the Tg-reductions is consistent with the Tg reductions for the dewetting from a liquid substrate reflects changes in segmental dynamics upon confinement rather than chain effects. This contrasts with changes, including increases seen in dewetting from a rigid substrate, for different molecular architectures reported in the literature.  相似文献   

6.
The surface molecular motion of monodisperse polystyrene (PS) with various chain end groups was investigated on the basis of temperature‐dependent scanning viscoelasticity microscope (TDSVM). The surface glass transition temperatures, Tgss for the proton‐terminated PS (PS‐H) films with number‐average molecular weight, Mn of 4.9k–1,450k measured by TDSVM measurement were smaller than those for the bulk one, with corresponding Mns, and the Tgss for Mn smaller than ca. 50k were lower than room temperature (293 K). In the case of Mn = ca. 50k, the Tgss for the α,ω‐diamino‐terminated PS (α,ω‐PS(NH2)2) and α,ω‐dicarboxy‐terminated PS (α,ω‐PS(COOH)2) films were higher than that of the PS‐H film. On the other hand, the Tgs for the α,ω‐perfluoroalkylsilyl‐terminated PS (α,ω‐PS(SiC2CF6)2) film with the same Mn was much lower than those for the PS films with all other chain ends. The change of Tgs for the PS film with various chain end groups can be explained in terms of the depth distribution of chain end groups at the surface region.  相似文献   

7.
The photon transmission technique was used to monitor the temperature evolution of film formation from poly(vinyl acetate) (PVAc) latex particles with two different molecular weights. Two sets of latex films were prepared below the glass transition temperature (Tg) of PVAc, which are named as low (LM) and high molecular weight (HM) films. These films were annealed at elevated temperatures above the Tg of PVAc for various time intervals. It is observed that transmitted photon intensity (Itr) from these films increased as the annealing temperature was increased. Onset temperatures (TH) at given times (τH) for starting the optical clarity of LM and HM films were measured and used to calculate the healing activation energies (ΔH) for the PVAc minor chains, and found to be as 28.1 kcal/mol and 27.7 kcal/mol, respectively. The increase in the transmitted photon intensity, Itr above TH was attributed to the increase in the number of disappeared interfaces between the deformed latex particles. Prager–Tirrell (PT) model was employed to interpret the increase in the crossing density of chains at the junction surfaces. The interdiffusion (backbone) activation energies (ΔE) were measured and found to be 177.5 kcal/mol and 210.7 kcal/mol for a diffusing PVAc chains across the junction surface of LM and HM latex films, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2918–2925, 2007  相似文献   

8.
Abstract

The dynamic response of 5CB films with a free surface to a laser pulse is investigated. A magnetic field above the Fréedericksz transition is applied initially to induce a starting angle on the molecular orientation. A single 1·06 μm laser pulse with e ?1 pulse width 0·2 ms is incident normally upon the films. When the laser pulse polarization is perpendicular to the magnetic field, only a thermal effect is involved. While it is parallel to the magnetic field, both molecular orientation and thermal effects are involved. The results from films with a free surface are compared with those from films sandwiched between two glass substrates. The free surface effect, beam size effect, and thermal effect are discussed by comparing with theoretical analysis.  相似文献   

9.
We report on evanescent wave optical measurements of the glass transition temperature, Tg, of spin-cast PMMA films as a function of film thickness and molecular weight. It was found that for films of high molecular weight PMMA (Mn > 100,000 g mol−1) a strong Tg depression occurs for films that are thinner than 100 nm in case they are deposited on hydrophobic substrates. This strong Tg depression of up to 25°C decreases if similarly thick films of PMMA of low molecular weights are investigated and vanishes completely for PMMA with Mn < 12,000 g mol−1. For films made of these materials Tg is found to be identical to that of the bulk even for films as thin as 5 nm. The results might be interpreted in terms of free volume considerations. To check this assumption we also designed and built a pressure cell that can be used together with the evanscent wave optical techniques for similar measurement, but with the additional option to do the measurements at different pressures up to ca. 100 MPa to further vary the free volume of these polymer films in constrained geometry. Some first results obtained with this setup are also described.  相似文献   

10.
Stable and surface‐modified films with regular porous arrays were created by crosslinking honeycomb structured porous films prepared via breath figures from poly(styrene‐co‐maleic anhydride). The formation of open or closed pores of the films was controlled by the addition of a polyion complex. Subsequent crosslinking of the films with 1,8‐diaminooctane led to films, which maintain their structure in solvents. In addition, excess amino functionality after crosslinking allowed the attachment of RAFT agent, 3‐benzylsulfanyl thiocarbonyl sulfanylpropionic acid, for the controlled surface polymerization of N‐isopropyl acrylamide (NIPAAm) and N‐acryloyl glucosamine (AGA). The attachment of thermo‐responsive glycopolymers onto the honeycomb structured porous films was confirmed using contact angle measurements and confocal fluorescence microscopy. Cleavage of surface anchored polymers via aminolysis revealed that the molecular weights of the surface grafted chains are significantly larger than the molecular weight of the chains generated in solution. The honeycomb structured porous films with their grafted PNIPAAm‐ran‐PAGA polymer chains showed selective recognition of Concanavalin A (ConA). Below the lower critical solution temperature (LCST) of the surface, the conjugation is switched off, while above the LCST the surface grafted glucose moieties bind strongly to ConA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3440–3455, 2010  相似文献   

11.
There are many studies on the surface molecular motion of polymer films [ 1 ], but no report on surface thermal properties of polymer because of experimental difficulties. The thermal property of oligomeric polystyrene (PS) was investigated by differential scanning calorimetry (DSC) in the present study. In order to increase the ratio of surface area to volume of PS particles, the DSC samples were prepared by mechanically grinding mixtures of PS and Al2O3 powders. The grinding mixtures of these powders with low particle size showed a transition at a low temperature of 14–17 °C (much lower than the bulk glass transition temperature, Tg), and this low‐temperature transition was dependent on the size of PS particles. This transition seems to result from the surface molecular motion of the activated surface layer of PS. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The room-temperature tensile mechanical properties and fracture topographies of polycarbonate are reported as a function of strain rate, sample preparation, and thermal history above and below Tg. The bulk physical structural changes produced by various thermal treatments were monitored by density, yield stress, and differential scanning calorimetry observations. Ordered regions do not form in bulk polycarbonate at or below 145°C. The changes produced in the mechanical properties of polycarbonate on annealing below Tg, relative to a quenched or 145°C equilibrium-state glass, are caused by liquidlike packing changes in free volume. In room-temperature tensile a 125°C–6 day annealed glass exhibits transitional behavior from shear free volume, such as quenched and 145°C equilibrium-state glasses, this transition occurs at higher strain rates. Polycarbonate embrittles as a result of the cessation of shear yielding and reversion to a crazing failure mode with a corresponding decrease in molecular flow and energy to failure. Density measurements indicate that ordered regions do start to grow immediately above 145°C in bulk polycarbonate. This phenomenon allows precrystalline and/or crystalline entities to grow below the bulk Tg in thin films and on the free surfaces of thick films where mobility restrictions are less severe than in the bulk. From bright-field transmission electron micrographs of thin films and carbon–platinum surface replicas of etched thick films it is suggested that the observed spherical precrystalline structures are aggregates of 50–60 Å ordered molecular do mains.  相似文献   

13.
Experimental observations (ellipsometry, scanning force microscopy, and nuclear magnetic recsonance (NMR)) of the freezing behavior of thin supported films as well as the free surface of atactic polystyrene are reported, taken at a particularly small molecular weight of 2 kg/mol. Remarkably, we find the same effect of reduction of the glass transition temperature, Tg, as observed earlier with much longer molecules. Furthermore, surface melting is observed by NMR, with the molten layer thickness similar to what has been observed with larger molecular weight. We conclude that molecular geometry effects cannot account for these observations, and that a consistent explanation must be presentable in a continuum picture. On the basis of the capillary mode spectrum of the free surface and of the supported films, we present such a model and find that it accounts very consistently with all observations made so far, at least with polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2968–2979, 2006  相似文献   

14.
A study of dichroic dye-liquid crystal mixtures (guest-host systems) in monolayers formed at a gas-liquid interface (Langmuir films) and at a solid surface (Langmuir-Blodgett films) has been made. As a host 4- n -octyl-4′-cyanobiphenyl (8CB) or 4- n -pentyl-4″-cyano- p -terphenyl (5CT) were chosen, while three dichroic azo dyes with various molecular structures were used as guest species. The dyes were added to the liquid crystal matrices at a concentration corresponding to the whole range of molar fractions and the surface pressure-mean molecular area isotherms for Langmuir films were recorded. On the basis of the isotherms, conclusions about the molecular organization and the miscibility of the components in the ultrathin films were drawn. The Langmuir films were transferred onto the quartz plates at surface pressures below the collapse point. The polarized absorption spectra of the Langmuir-Blodgett films were recorded and information about the alignment and intermolecular interactions in the mixtures of the non-amphiphilic dichroic dyes and the liquid crystals with strongly polar terminal groups were obtained.  相似文献   

15.
The physical aging behavior, time‐dependent densification, of thin polystyrene (PS) films supported on silicon are investigated using ellipsometry for a large range of molecular weights (MWs) from Mw = 97 to 10,100 kg mol?1. We report an unexpected MW dependence to the physical aging rate of h < 80‐nm thick films not present in bulk films, where samples made from ultra‐high MWs ≥ 6500 kg mol?1 exhibit on average a 45% faster aging response at an aging temperature of 40 °C compared with equivalent films made from (merely) high MWs ≤ 3500 kg mol?1. This MW‐dependent difference in physical aging response indicates that the breadth of the gradient in dynamics originating from the free surface in these thin films is diminished for films of ultra‐high MW PS. In contrast, measures of the film‐average glass transition temperature T g(h) and effective average film density (molecular packing) show no corresponding change for the same range of film thicknesses, suggesting physical aging may be more sensitive to differences in dynamical gradients. These results contribute to growing literature reports signaling that chain connectivity and entropy play a subtle, but important role in how glassy dynamics are propagated from interfaces. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1224–1238  相似文献   

16.
In this paper we present the findings of our investigations using molecular dynamics, on molecularly thin films of n-octane confined between topographically smooth solid surfaces. We focus on the effect of increasing solid surface-methylene unit energetic affinity and the effect of increasing pressure (normal load) of the film in inducing liquid-solid phase transitions. We observed an abrupt transition in the structural features of the film at a critical value of the characteristic energy that quantified the affinity between solid surfaces and methylene units. This energetically driven transition was evident from the discontinuous increase of intermolecular order, a precipitous extension of the octane molecules and freezing of molecular migration and rotation. Increasing pressure had a similar effect in inducing a liquid-solid phase transition. The characteristics of the transition showed that it is a mild first order transition from a highly ordered liquid to a poorly organized solid. These findings demonstrate that the solidification of nanoscopically thin films of linear alkanes is a general phenomenon (driven either energetically or by increasing pressure), and does not require the aid of commensurate surface topography.  相似文献   

17.
The direct mode of scanning electrochemical microscopy (SECM) was used for the local deposition of oligonucleotide (ODN) patterns on thin gold films and the generation‐collection (GC) mode was applied for the determining the amount of surface‐accessible oligonucleotides. The local deposition was achieved through the micrometer‐sized formation of a conducting polymer bearing 15mer single‐stranded oligonucleotide strands. After the interaction of the oligonucleotide with its biotin‐labeled complimentary strand, streptavidin was bound. The molecular assembly was completed by linking biotin‐labeled β‐galactosidase from Escherichia coli to the streptavidin. The activity of the linked β‐galactosidase was mapped with SECM in the GC mode by monitoring the oxidation of p‐aminophenol (PAP) formed in the enzyme‐catalyzed hydrolysis of p‐aminophenyl‐β‐D ‐galactopyranoside. The feedback effect due to recycling of the reaction product at the gold surface was analyzed. It was shown experimentally that this effect becomes insignificant at ultramicroelectrode (UME)‐substrate distances larger than 3 UME radii. The flux of formed PAP allowed the determination the surface density of accessible oligonucleotide strands in the functionalized polymer. It was shown that that thicker pyrrole/ODN–Pyrrole polymer films do not lead to a significantly increased accessible ODN surface concentration.  相似文献   

18.
The birefringence of thin films of poly(1-trimethylsilylpropyne) with 55 : 45 ratio of units with transand cisconfigurations of the -C = C- bonds was studied by the method of an oblique polarized beam. The surface birefringence coefficients were determined for films of various thicknesses. A theory of birefringence in the surface layers of polymer films was suggested, based on the assumed exponential decrease in the orientation order parameters of the molecular chain fragments with increasing distance from the film surface.  相似文献   

19.
In previous work we observed two simultaneous transitions in high molecular weight (MW) free‐standing polystyrene films that were interpreted as two thickness‐dependent reduced glass transition temperatures (Tgs). The weaker lower transition agreed well with the MW‐dependent Tg(h) previously reported, while the much stronger upper transition matched the MW‐independent Tg(h) previously observed in low‐MW free‐standing films. Here, we investigate the nature of these two transitions by inspecting the temperature dependence of the films' thermal coefficient of expansion (TCE) and present physical aging measurements using ellipsometry both below and in‐between the two transitions. TCE values indicate approximately 80 to 90% of the film solidifies at the upper transition, while only 10 to 20% remains mobile to lower temperatures, freezing out at the lower transition. Physical aging is observed at a temperature below the upper transition, but above the lower transition, indicative of the upper transition being an actual glass transition associated with the α‐relaxation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 64–75  相似文献   

20.
Amorphous silicon oxycarbide (a-SiOC:H) films produced by remote plasma RPCVD from diethoxymethylsilane (DEMS) were characterized in terms of their basic properties related to the coatings deposited using conventional plasma enhanced PECVD method. The effect of substrate temperature (TS) on the growth rate, chemical composition, structure, and properties of resulting a-SiOC:H films is reported. Film growth is an adsorption-controlled process, wherein two mechanisms can be distinguished with a transition at about TS=70°C. Depending on the temperature, films of different nature can be obtained, from polymer-like to highly crosslinked material with C-Si-O network. The chemical structure of a-SiOC:H films was characterized by FTIR, 13C and 29Si solid-state NMR, and X-ray photoelectron spectroscopes. The a-SiOC:H films were also characterized in terms of their density, refractive index, surface morphology, conformality of coverage, hardness, adhesion to a substrate, and friction coefficient. The films were found to be morphologically homogeneous materials exhibiting good conformality of coverage and small surface roughness. Their refractive index exhibits anomalous effect revealing a minimum value at TS=125°C. Due to their exceptional physical properties a-SiOC:H films produced by RPCVD from DEMS precursor seems to be useful as potential dielectric materials or coatings for various encapsulation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号