首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (σ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ~ σ(4/3), which is supported by our experimental data.  相似文献   

2.
Thermo-responsive polymer films have enabled the development of various functional surfaces with switchable interfacial properties. Assessing the surface forces and friction on such films is of paramount importance. On the one hand, it allows us to extract a great deal of information on the interfacial properties of the films, e.g., adhesiveness and lubricity, and how they could be tuned using different stimuli. On the other hand, surface force measurements complement other thin-film analysis methods, e.g., ellipsometry, to better perceive the correlation between the molecular properties of the polymer chains and the interfacial properties of the film. On this basis, we will, herein, provide a concise review of some recent studies on surface forces and friction tuned by thermo-responsive polymer films. This outline comprises a summary of several research works addressing the effects of temperature, solvent composition, and salts on surface forces and friction. In the end, we briefly discuss a few select studies in which the regulation of surface forces by thermo-responsive polymers is examined with an emphasis on the potential applications.  相似文献   

3.
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.  相似文献   

4.
The friction and adhesion properties of polystyrene surfaces are studied below the glass transition temperature by means of atomic force microscopy in argon. Even at a temperature far below the glass transition, the repeated sliding of a polystyrene bead tip on the non-cross-linked polystyrene surface causes significant reduction of friction and adhesion forces. There is no measurable wear of the polystyrene surface due to repeated sliding. These decreases are associated with the alignment of the outermost polymer segments induced by repeated rubbing. There are only little changes in friction and adhesion on the cross-linked polystyrene surface in which the covalent cross-linking prevents chain realignment.  相似文献   

5.
Untreated polyethylene will adhere well to aluminum only if it is applied in an oxidizing atmosphere. Peel strengths for coatings applied to various bright copper surfaces are far lower, probably because of decrease in polymer oxidation when copper is present. Preoxidized polyethylene sheet adheres well when melted on to copper in nitrogen. In view of earlier evidence for the formation of a weak interfacial layer containing shortchain material, it is proposed that the weak bond strengths so caused are substantially improved by the preferential adsorption of longer-chain surface-active oxidized species in the polymers.  相似文献   

6.
Thermal fluctuations of the segment density profile of a polymer brush were probed by dynamic light scattering in the evanescent wave configuration; the time correlation functions of concentration fluctuations with wavevector q were measured. It is found that there is a preferred wavelength of the order of the brush thickness, L0, of these fluctuations with a concurrent slowing down of their thermal decay rate. A theory is presented for the small-amplitude deformation of the free surface of a parabolic brush in solution; a maximum in the respective structure factor of the concentration fluctuations is predicted at q* L0O(1), in agreement with the experiment.  相似文献   

7.
Choose sides: differential polymer adhesion   总被引:1,自引:0,他引:1  
AFM-based single molecule desorption measurements were performed on surface end-grafted poly(acrylic acid) monolayers as a function of the pH of the aqueous buffer to study the adhesion properties of polymers that bridge two surfaces. These properties were found to depend on the adhesion forces of both surfaces in a differential manner, which is explained with a simple model in analogy to the Bell-Evans formalism used in dynamic force spectroscopy. The measured interaction forces between the poly(acrylic acid) chains and silicon nitride AFM tips depend on the grafting density of the polymer monolayers as well as on the contour length of the polymer chains. This study demonstrates that the stability of polymer bridges is determined by the adhesion strengths on both surfaces, which can be tuned by using pH-dependent polyelectrolyte monolayers.  相似文献   

8.
The influence of bacterial surface lipopolysaccharides (LPS) on cell transport and adhesion has been examined by use of three mutants of Escherichia coli K12 with well-characterized LPS of different lengths and molecular composition. Two experimental techniques, a packed-bed column and a radial stagnation point flow system, were employed to investigate bacterial adhesion kinetics onto quartz surfaces over a wide range of solution ionic strengths. Although the two systems capture distinct deposition (adhesion) mechanisms because of their different hydrodynamics, similar deposition kinetics trends were observed for each bacterial strain. Bacterial deposition rates were directly related to the electrostatic double layer interaction between the bacteria and quartz surfaces, in qualitative agreement with classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. However, DLVO theory does not fully explain the deposition behavior for the bacterial strain with the lengthy, uncharged O-antigen portion of the LPS. Neither the length nor the charge characteristics of the LPS molecule directly correlated to deposition kinetics, suggesting a complex combination of cell surface charge heterogeneity and LPS composition controls the bacterial adhesive characteristics. It is further suggested that bacterial deposition behavior is determined by the combined influence of DLVO interactions, LPS-associated chemical interactions, and the hydrodynamics of the deposition system.  相似文献   

9.
10.
For two contacting rigid bodies, the friction force F is proportional to the normal load and independent of the macroscopic contact area and relative velocity V (Amonton's law). With two mutually sliding polymer samples, the surface irregularities transmit deformation to the underlying material. Energy loss along the deformation cycles is responsible for the friction force, which now appears to depend strongly on V [see, e.g., N. Maeda et al., Science 297, 379 (2002)]. We base our theoretical interpretation on the assumption that polymer chains are mainly subjected to oscillatory "reptation" along their "tubes." At high deformation frequencies-i.e., with a large sliding velocity V-the internal viscosity due to the rotational energy barriers around chain bonds hinders intramolecular mobility. As a result, energy dissipation and the correlated friction force strongly diminish at large V. Derived from a linear differential equation for chain dynamics, our results are basically consistent with the experimental data by Maeda et al. [Science 297, 379 (2002)] on modified polystyrene. Although the bulk polymer is below T(g), we regard the first few chain layers below the surface to be in the liquid state. In particular, the observed maximum of F vs V is consistent with physically reasonable values of the molecular parameters. As a general result, the ratio FV is a steadily decreasing function of V, tending to V(-2) for large velocities. We evaluate a much smaller friction for a cross-linked polymer under the assumption that the junctions are effectively immobile, also in agreement with the experimental results of Maeda et al. [Science 297, 379 (2002)].  相似文献   

11.
It has long been known that quasicrystal surfaces show low sliding friction and adhesion, features that have led to practical applications, notably in cookware. Several mechanisms have been proposed for how quasiperiodicity might result in low friction and low adhesion. These include mechanical characteristics (stiffness and hardness), electronic properties, phonon propagation, surface topography at atomic length scales, and relatively irrational spacings between the atoms of the two sliding surfaces (“superlubricity”). Recent work by Park et al. finds an eightfold anisotropy in the coefficient of sliding friction between a decagonal quasicrystal surface and a passivated probe. This giant anisotropy epitomizes in a single experiment the difference between periodicity and aperiodicity, yet theoretical explanations of the effect remain controversial.  相似文献   

12.
Dynamic simulations of adhesion and friction in chemical force microscopy   总被引:1,自引:0,他引:1  
A hybrid molecular simulation approach has been applied to investigate dynamic adhesion and friction between a chemical force microscope (CFM) tip and a substrate, both modified by self-assembled monolayers (SAMs) with hydrophobic methyl (CH(3)) or hydrophilic hydroxyl (OH) terminal groups. The method combines a dynamic model for the CFM tip-cantilever system and a molecular dynamics (MD) relaxation technique for SAMs on Au(111) at room temperature. The hybrid simulation method allows one to simulate force-distance curves (or adhesion) and friction loops (or friction coefficient) in the CFM on the experimental time scale for the first time. The simulation results also provide valuable molecular information at the interface that is not accessible in CFM experiments, such as the actual tip position with respect to the cantilever support position, molecular and hydrogen-bonding structures at the interface, and load distributions among different molecular chains (or single-molecule forces). Results show that the adhesion force and friction coefficient for the OH/OH contact pair are much larger than those for the CH(3)/CH(3) pair due to the formation of hydrogen bonds. During the retraction of a CFM tip from a surface, the CFM tip is away from the sample surface slightly while the spring undergoes dramatic elongation in the normal direction before rupture occurs. Single-molecule forces are distributed unevenly at the contact area. Surface energies calculated for functionalized surfaces compare well with those determined by experiments.  相似文献   

13.
In this study, the reinforcing mechanism of amine functionalized on carbon fibers (CFs) has been precisely discussed, and the differences between aliphatic and aromatic compounds have been illustrated. Polyacrylonitrile‐based CFs were functionalized with ethylenediamine, 4,4‐diaminodiphenyl sulphone, and p‐aminobenzoic acid (PAB), and CF‐reinforced epoxy composites were prepared. The structural and surface characteristics of the functionalized CFs were investigated using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), and scanning electron microscopy (SEM). Mechanical properties in terms of tensile and flexural strengths and moduli were studied. The FT‐IR results confirm the success in bonding amines on the CF surface. After treatment of CFs, the oxygen and nitrogen contents as well as the N/C ratio showed an increase. XPS results provided evidence of the chemical reaction during functionalization, rather than being physically coated on the CF surface. Chemical modification of CF with diamines led to considerable enhancement in compatibility of CF filaments and epoxy resin, and remarkable improvements were seen in both tensile and flexural properties of the reinforced composites. SEM micrographs also confirmed the improvement of interface adhesion between the modified CFs and epoxy matrix. Finally, it can be concluded that PAB is a promising candidate to functionalize CF in order to improve interfacial properties of CF/epoxy composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Influence of adhesion on the sliding and rolling friction   总被引:1,自引:0,他引:1  
Yet in 1934, one of the authors had developed the molecular friction theory explaining the external friction by dissipation of energy on the molecular unevenness of the bodies in friction. This theory distinctly determines the role of adhesion in the processes of the external sliding friction. The adhesion forces are used in this theory only for explaining deviation from the Amonton's law expressing the proportionality of the friction force to the normal load.

The rolling friction process (in the absence of deformations) represents a process of formation and breakage of adhesion bonds. Using the electron theory as the basis, the mechanism of influence of the electrostatic component of adhesion on the rolling friction is considered, the electrostatic component being attributable to the formation of a double electric layer when solids are in friction, and when its plates are separated as the contact is broken.  相似文献   


15.
Friction force measurements have been conducted with a colloid probe on mica and silica (both hydrophilic and hydrophobized) after long (24 h) exposure to high-humidity air. Adhesion and friction measurements have also been performed on cellulose substrates. The long exposure to high humidity led to a large hysteresis between loading and unloading in the friction measurements with separation occurring at large negative applied loads. The large hysteresis in the friction-load relationship is attributed to a contact area hysteresis of the capillary condensate which built up during loading and did not evaporate during the unloading regime. The magnitude of the friction force varied dramatically between substrates and was lowest on the mica substrate and highest on the hydrophilic silica substrate, with the hydrophobized silica and cellulose being intermediate. The adhesion due to capillary forces on cellulose was small compared to that on the other substrates, due to the greater roughness of these surfaces.  相似文献   

16.
Correlations between adhesion hysteresis and local friction are theoretically and experimentally investigated. The model is based on the classical theory of adhesional friction, contact mechanics, capillary hysteresis, and nanoscale roughness. Adhesion hysteresis was found to scale with friction through the scaling factor containing a varying ratio of adhesion energy over the reduced Young's modulus. Capillary forces can offset the relationship between adhesion hysteresis and friction. Measurements on a wide range of engineering samples with varying adhesive and elastic properties confirm the model. Adhesion hysteresis is investigated under controlled, low humidity atmosphere via ultrasonic force microscopy. Friction is measured by the friction force microscopy.  相似文献   

17.
Miyabe H  Konishi C  Naito T 《Organic letters》2000,2(10):1443-1445
A high degree of stereocontrol in solid-phase radical reactions was achieved by using triethylborane and diethylzinc as a radical initiator at low reaction temperature. Alkyl radical addition to Oppolzer's camphorsultam derivatives of oxime ether anchored to polymer support proceeded smoothly to give the alpha-amino acid derivatives with excellent diastereoselectivities.  相似文献   

18.
19.
Polymer electrolytes a re essential for next-gene ration lithium batteries because of their excellent safety record.However,low ionic conductivity is the main obstacle restricting their commercial application.Composites with nanoparticles are a promising route to overcome this obstacle.In this work,lithium polystyrene sulfonate brushes(LiPSS)is anchored to silicon dioxide nanoparticles with chemical bonding using atom transfer radial polymerization(SI-ATRP).The composite polymer electrolytes are made by mixing vinylene carbonate and nanoparticles via a facile in situ polymerization process.The ionic conductivity of composite polymer electrolytes is improved to 7.2×10^-4 S/cm at room temperature,which is attributed to the low degree of crystallinity of polymer electrolyte and the fast ion transport on the surfaces of polymer brush layers that act as a conductive network.The composite polymer electrolytes show a wide electrochemical window of approximately 4.5 V vs.Li^+/Li and excellent cycling performance retention of approximately 95%after 100 cycles at ambient temperature.The results also prove that surface groups of ceramic na noparticles are an important way to increase the electrochemical properties of composite polymer electrolytes.  相似文献   

20.
The intrinsic viscosity [η] and the translational friction coefficient f of polymer molecules in solution are calculated on the basis of the porous sphere model. The only information needed to predict [η] and f is the polymer molecular weight, the radius of gyration in the solvent, and the permeability as a function of position in the “porous sphere.” For systems for which this information is available there is satisfactory agreement between predicated and directly measured values of [η] and f. No adjustment of parameters is required. The influence of solvent quality is more complex than is suggested by the experimentally verified Flory–Fox relation for [η]; the simple form of this relation stems from the fact that two quite large effects of solvent quality approximately compensate each other. The complete flow pattern of the solvent around and through the polymer coil can be calculated. Contrary to what is usually believed the solvent flow in the polymer coil is not “effectively blocked”, even at the center. The connection between the present treatment and the microscopic theory of Kirkwood and Riseman is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号