首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ϵ-caprolactone) (PCL)-polydimethylsiloxane diblock and triblock copolymers and poly(ϵ-caprolactone-co-4-ethylcaprolactone) random copolymers were prepared through the homogeneously catalyzed coordination anionic polymerization of ϵ-caprolactone (CL) and the copolymerization of CL with 4-ethyl-ϵ-caprolactone (EtCL) in the presence of hydroxy-terminated polysiloxanes or allyl alcohol as chain-transfer agents, respectively. Polysiloxane precursors with hydroxypropyl or hydroxyethyl propyl ether end groups were obtained by the hydrosilation of the appropriate unsaturated alcohol with monofunctional or difunctional hydro-terminated polysiloxanes of different molecular weights. As proven by differential scanning calorimetry analysis, the presence of siloxane blocks and EtCL units determined the diminished copolymer crystallinity, which was shown by the reduced melting temperatures and enthalpy of fusion with respect to those of pure PCL. Both types of copolymers were found to form, in the presence of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) emulsifier, monodisperse and stable nanoparticles able to encapsulate different types of bioactive compounds (Vitamin E and indomethacin). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 689–700, 2004  相似文献   

2.
Polymerizations of lactides via cationic, anionic, and insertion mechanisms are described. The usefulness of these three mechanisms for preparative purposes is evaluated. The polymerization mechanisms initiated by Al-alkoxides or Sn(II)-2-ethylhexanoate are discussed in more detail. Furthermore, the usefulness of 13C NMR spectroscopy for the sequence analysis of copolylactones is demonstrated. Copolyesters of D,L-lactide and ϵ-caprolactone with Tg's around 35°C and high transparency were synthesized. Films of these copolylactones were characterized by various methods and their usefulness as resorbable wound dressing was evaluated. More than 30 patients were successfully treated with this novel wound dressings.  相似文献   

3.
Pseudoanionic polymerization of ϵ-caprolactone (CL), initiated with dialkylaluminum alkoxides, was used for the tailored synthesis of poly(CL) with M̄n ≤ 100 000 and M̄w /M̄n < 1. 20. Macromolecules with functional groups at one or at both ends were obtained in this way. Controlled polymerization of CL allowed to prepare poly(dodecyl acrylate)-g-poly(ϵ-caprolactone) (poly(DAC)-g-poly(CL)) with well defined poly(CL) grafts. These copolymers were used as the surface active agents for the direct synthesis of poly(CL) microspheres. The number average diameter (D̄n ) of poly(CL) microspheres varied from 0.628 μm to 0.94 μm and the diameter polydispersity (D̄v /D̄n ) varied from 1.038 to 1.26, depending on the composition of poly(DAC)-g-poly(CL). Human serum albumin (HSA) and human gamma globulins (γ G) were attached to the poly(CL) microspheres. The maximal surface concentrations of HSA and γ G adsorbed onto the microspheres were equal to 9·10−4 g/m2 and 2.0·10−3 g/m2 respectively.  相似文献   

4.
Poly(D ,L -lactide)–poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone)–poly(D ,L -lactide) block copolymer (PLA–PCL–PEG–PCL–PLA) was prepared by copolymerization of ϵ-caprolactone (ϵ-CL) and D ,L -lactide (D ,L -LA) initiated by potassium poly(ethylene glycol)ate in THF at 25°C. The copolymers with different composition were synthesized by adjusting the mole ratio of reaction mixture. The resulted copolymers were characterized by 1H-NMR, 13C-NMR, IR, DSC, and GPC. Efforts to prepare copolymers with the corresponding structure of PCL–PLA–PEG–PLA–PCL and D ,L -lactide/ϵ-caprolactone random copolymers were not successful. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
AB block copolymers of ϵ-caprolactone and (L )-lactide could be prepared by ring-opening polymerization in the melt at 110°C using stannous octoate as a catalyst and ethanol as an initiator provided ϵ-caprolactone was polymerized first. Ethanol initiated the polymerization of ϵ-caprolactone producing a polymer with ϵ-caprolactone derived hydroxyl end groups which after addition of L -lactide in the second step of the polymerization initiated the ring-opening copolymerization of L -lactide. The number-average molecular weights of the poly(ϵ-caprolactone) blocks varied from 1.5 to 5.2 × 103, while those of the poly(L -lactide) blocks ranged from 17.4 to 49.7 × 103. The polydispersities of the block copolymers varied from 1.16 to 1.27. The number-average molecular weights of the polymers were controlled by the monomer/hydroxyl group ratio, and were independent on the monomer/stannous octoate ratio within the range of experimental conditions studied. When L -lactide was polymerized first, followed by copolymerization of ϵ-caprolactone, random copolymers were obtained. The formation of random copolymers was attributed to the occurrence of transesterification reactions. These side reactions were caused by the ϵ-caprolactone derived hydroxyl end groups generated during the copolymerization of ϵ-caprolactone with pre-polymers of L -lactide. The polymerization proceeds through an ester alcoholysis reaction mechanism, in which the stannous octoate activated ester groups of the monomers react with hydroxyl groups. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
Pseudoanionic and anionic polymerizations of ε-caprolactone and lactides in 1,4-dioxane:heptane mixtures containing poly(dodecyl acrylate)-g-poly(ε-caprolactone) yield polyesters in form of microspheres. Monitoring partition of active centers between solution and microspheres revealed that particles are formed during initial period, when macromolecules reach their critical masses (ca. 1 000) and became insoluble. Then, propagation proceeds inside of microspheres into which monomer diffuses from solution. Monitoring of variation of the number of particles in a unit volume of reaction mixture with time indicated that after a primary nucleation the delayed nucleation and aggregation are absent. In effect, microspheres with narrow diameter distribution are obtained. Kinetic measurements revealed that in the dispersion pseudoanionic (initiator (CH3CH2)2AlOCH2CH3) and anionic (initiator (CH3)3SiONa) polymerizations of ε-caprolactone the overall rates of monomer conversion are from 10 to 30 times higher than for the corresponding polymerizations in solution (THF solvent). Analysis of kinetic equations indicated that the observed faster monomer conversions in polymerizations in dispersed systems are due to the high local concentrations of active centers and monomer in growing microspheres.  相似文献   

7.
Homopolymers of adipic anhydride (AA) and block copolymers of ϵ-caprolactone (ϵ-CL) and AA have been synthesized with aluminum triisopropoxide as an initiator. Homopolymerization was studied at 20°C in toluene and methylene chloride (CH2Cl2). The end-group analysis agrees with a coordination insertion mechanism based on the acyl-oxygen cleavage of the AA ring. Living poly(ϵ-caprolactone) (PCL) chains are very efficient macro-initiators for the polymerization of AA, with formation of diblock copolymers of a narrow molecular weight distribution. At our best knowledge, low molecular weight ω-aluminum alkoxide PCL macroinitiators (Mn < 1000) allow the first valuable synthesis of PAA with a molecular weight as high as 58,000 and a quite narrow polydispersity (Mw/Mn = 1.2). Size-exclusion chromatography (SEC) and 13C NMR confirm the blocky structure of the copolymers, in agreement with DSC that shows two melting endotherms and two glass transitions characteristic of the crystalline and amorphous phases of PCL and PAA, respectively. Block copolymers of ϵ-CL and AA are also sensitive to hydrolysis, which makes them possible candidates for biomedical applications. Initiation of the AA polymerization in bulk with aluminum triisopropoxide in the presence of various ligands is also discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
Following our continued interest in the production of bioerodible and biodegradable functional polymers for biomedical applications, we synthesized and characterized new unsaturated polyesters. The presence of functional groups in the polymer backbone provided sites for chemical modification, and through a variation in the structure, the physical properties, such as the hydrophilicity and solubility, could be affected. With 1,1-di-n-butyl-stanna-2,7-dioxacyclo-4-heptene as the initiator in the ring-opening polymerization of polyesters, a new set of functionalized polyesters was created. The polymerization of ϵ-caprolactone resulted in poly(ϵ-caprolactone) with a double bond incorporated into the structure. The polymers were obtained in a controlled manner with low molecular dispersities. The double bond was previously incorporated into L -lactide polymers, and the two reactions were compared in this study. The conversion of ϵ-caprolactone, with a degree of polymerization of 50, was completed within 140 min, whereas for L -lactide, only a 45% conversion took place in the same period of time. The dispersities were somewhat higher with ϵ-caprolactone because of the higher reaction rate and, therefore, lower selectivity. The incorporated CC double bond in the polyesters provided a variety of opportunities for further modifications. In this case, the double bond of the L -lactide macromonomers was oxidized into epoxides. Epoxidation was carried out with m-chloroperoxybenzoic acid as a chemical reagent. The conversion of the double bonds into epoxides was completed, and the obtained yields were good (>95%). As a result of the mild reaction conditions, the epoxidation of the double bond was carried out quantitatively without any side reactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 444–452, 2004  相似文献   

9.
Dendrigraft poly(ϵ‐caprolactone)s with high molecular weight and narrow polydispersity are synthesized via a convenient generation‐growth approach. Copolymerization of ϵ‐caprolactone (CL) and 4‐(2‐benzoxyethoxy)‐ϵ‐caprolactone (BECL) with stannous octanoate as a catalyst affords a functionalized poly(ϵ‐caprolactone) (PCL) with benzyl‐protected hydroxyl side groups. After removal of benzyl groups by palladium‐catalyzed hydrogenolysis, the graft copolymerization of CL and BECL onto the hydroxyl‐bearing linear polyester (zero‐generation) affords the first‐generation graft polyester. Further deprotection and graft polymerization cycles led to dendrigraft polyesters. Molecular weights are multiplied in each graft copolymerization. The second‐generation dendrigraft poly(ϵ‐caprolactone) has an Mw of 236 000 g·mol−1 and Mw/Mn of 1.53.  相似文献   

10.
Results on the kinetics of polymerization of ϵ -caprolactone (ϵ -CL) under the action of quaternary onium salts with complex counterions are reported. The structure and molecular weight distribution (MWD) of polymerization products, and of the catalysts and active propagating centers were studied by gel permeation and gas chromatography, IR and UV spectroscopy, chemical and X-ray analysis. The role of photochemical transformations at ϵ -CL polymerization in the presence of onium salts with counterion FeCl4 was revealed. The mechanism of polymerization is discussed.  相似文献   

11.
 Biodegradable polyester microspheres were synthesized directly by ring-opening polymerization of l-lactide initiated with 2,2-dibutyl-2-stanna-1,3-dioxepane. The polymerizations were carried out at 95 °C in a mixture of organic solvents (heptane/1,4–dioxane 4:1 v:v), in the presence of poly(dodecyl acrylate)-g-poly(ɛ-caprolactone) used as a surface-active agent. Under these conditions the poly(L-lactide) synthesized was shaped into microspheres. The absence of new particles in the polymerizations with multistep monomer addition indicated that after the formation of particle seeds the propagation proceeds exclusively inside the microspheres. The mean volume of these microspheres was proportional to the monomer conversion. It was found that regardless of the initiator concentration the average number of poly(L-lactide) macromolecules in one microsphere was 1.84 × 108. Matrix-assisted laser desorption ionization time of flight spectroscopy of poly(L-lactide) in the microspheres indicated that the propagation in the particles was accompanied by intra- and intermolecular transesterification side reactions, resulting in reshuffling of the polymer segments and the formation of cyclic oligomers. Received: 20 December 2000 Accepted: 7 June 2001  相似文献   

12.
Poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone) triblock copolymers (PECL) covering a wide range of poly(ethylene glycol) (PEG) lengths were synthesized with alkali metal alkoxide derivatives of poly(ethylene glycol). The effects of various factors, such as amount of the initiator, reaction time and temperature, polarity of solvent, length of PEG segment, and counterion on the polymerization were investigated. The copolymers were characterized by 1H-NMR, IR, GPC, and DSC. It was found that THF system is superior to toluene system. The conversion of the monomer increased with increase of the initiator concentration. High molecular weight of the copolymer and high conversion of the monomer was obtained at below 30°C within 5 min. The polymerization process was studied by GPC and the coexistence of propagation and transesterification reaction was found, which leaded to relatively broad molecular weight distribution of the copolymers. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
A zinc glutarate (ZnGA) catalyst was prepared from the reaction of zinc oxide and glutaric acid in dry toluene. ZnGA was found to exhibit a catalytic activity for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO) and the homopolymerization of PO but to reveal no catalytic activity for the homopolymerization of ϵ-caprolactone (CL). The ZnGA-catalyzed polymerization was extended for the terpolymerization of CO2 with PO and CL, producing poly(propylene carbonate-co-ϵ-caprolactone)s (PPCCLs) with a reasonably high molecular weight in high yields. In the terpolymerization, PO and CL were used as both co-monomers and reaction media, after the reaction completed, the excess co-monomers were easily recovered and reused in the next terpolymerization batch. For the synthesized polymers, enzymatic and biological degradability were investigated.  相似文献   

14.
The ring‐opening polymerization of two caprolactone monomers catalyzed by zinc undecylenate (ZU) is reported. Polymerizations were performed in bulk with benzyl alcohol (BnOH) as an initiator at 90 and 110 °C, respectively. A slower polymerization rate was observed for γ‐octyloxy‐ϵ‐caprolactone as compared to ϵ‐caprolactone. Diblock copolymers were synthesized by the sequential monomer addition at 90 and 110 °C. The kinetic studies performed for the ring‐opening polymerization of ϵ‐caprolactone and γ‐octyloxy‐ϵ‐caprolactone and the successful synthesis of diblock copolymers by the sequential monomer addition confirmed the controlled/living nature of zinc undecylenate catalyzed reactions.  相似文献   

15.
Living ω‐aluminum alkoxide poly‐ϵ‐caprolactone and poly‐D,L ‐lactide chains were synthesized by the ring‐opening polymerization of ϵ‐caprolactone (ϵ‐CL) and D,L ‐lactide (D,L ‐LA), respectively, and were used as macroinitiators for glycolide (GA) polymerization in tetrahydrofuran at 40 °C. The P(CL‐b‐GA) and P(LA‐b‐GA) diblock copolymers that formed were fractionated by the use of a selective solvent for each block and were characterized by 1H NMR spectroscopy and differential scanning calorimetry analysis. The livingness of the operative coordination–insertion mechanism is responsible for the control of the copolyester composition, the length of the blocks, and, ultimately, the thermal behavior. Because of the inherent insolubility of the polyglycolide blocks, microphase separation occurs during the course of the sequential polymerization, resulting in a stable, colloidal, nonaqueous copolymer dispersion, as confirmed by photon correlation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 294–306, 2001  相似文献   

16.
Dispersion polymerization of lactides and lactones has been studied and has received a great deal of attention used to prepare biodegradable polymers in supercritical carbon dioxide (ScCO2). The triblock copolymers of poly(?-caprolactone) PCL-polydimethylsiloxane (PDMS)-poly(?-caprolactone) PCL by the feed ratio of 1:2:1 and 1:3:1, respectively were synthesized to be used as the stabilizers in the dispersion polymerization of L-lactide. The fine poly(L-lactide) (PLLA) powders were obtained at the concentrations of 3% to 5%w/w (stabilizer/monomer). The results demonstrated that the triblock copolymers were the effective stabilizers for the dispersion polymerization of L-lactide. It was also found that the cooling process had a significant effect on the particle size of the fine powders. In order to obtain the best PLLA powders, it would be necessary to use the cooling process with stirring.  相似文献   

17.
The aluminum alkoxide mediated ring opening polymerization of functional lactones, such as γ‐ethylene ketal‐ϵ‐caprolactone (TOSUO), γ‐(triethylsilyloxy)‐ϵ‐caprolactone (SCL) and γ‐bromo‐ϵ‐caprolactone (γBrCL), is a versatile route to polyesters containing ketal, ketone, alcohol and bromide groups. As result of living polyaddition mechanism, random and block copolymerization of ϵCL and γBrCL has been successfully carried out. The reactivity ratios are quite similar (1.08 for ϵ‐CL, and 1.12 for γBrCL). These random copolymers are semicrystalline when they contain less than 30 mol% of γBrCL, otherwise they are amorphous. No transesterification reaction occurs during the sequential polymerization of ϵ‐CL and γBrCL leading to block copolymers. Reaction of poly(ϵCL‐co‐γBrCL) with pyridine provides quantitatively a polycationic polyester. Furthermore, the reaction of this random copolymer with 1,8‐diazabicyclo[5.4.0] undec‐7‐ene (DBU) is a route to unsaturated polyesters, whose the non conjugated double bonds can be quantitatively converted into epoxides by reaction with m‐chloroperbenzoic acid (mCPBA). No chain degradation is detected during these derivatization reactions of poly(ϵCL‐co‐γBrCL).  相似文献   

18.
A new polymer with pendant hydroxyl groups, namely, poly(N-phenyl-2-hydroxytrime-thylene amine) (PHA), was synthesized by a direct condensation polymerization of aniline and epichlorohydrin in an alkaline medium. The new polymer is amorphous with a glass transition temperature (Tg) of 70°C. Blends of PHA with poly(ϵ-caprolactone) (PCL), as well as with two water-soluble polyethers, poly(ethylene oxide) (PEO) and poly(vinyl methyl ether) (PVME), were prepared by casting from a common solvent. It was found that all the three blends were miscible and showed a single, composition dependent glass transition temperature (Tg). FTIR studies revealed that PHA can form hydrogen bonds with PCL, PEO, and PVME, which are driving forces for the miscibility of the blends. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
Samarium poly(oxamide) polyanions, formed quantitatively in situ by the reductive coupling polymerization of aromatic diisocyanates with samarium (II) iodide/hexamethylphosphoramide (HMPA) system, were directly used as the polymeric initiators in the graft polymerization with some electrophilic monomers. The graft polymerization of ϵ-caprolactone (CL) with several polyanions derived from bifunctional isocyanates, including tolylene 2,6-diisocyanate, o-tolidine diisocyanate and diphenylmethane diisocyanate, provided the corresponding graft copolymers in one-pot, indicating that the polyanion could work as a new type of reactive polymer. Several factors such as reaction temperature and time and the amount of HMPA and CL affected the behavior of the present polymerization system, and the graft copolymer was obtained quantitatively under the appropriate conditions. The results of the graft polymerizations of tert-butyl methacrylate and methyl methacrylate with the polyanion were also presented. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1381–1387, 1997  相似文献   

20.
Biodegradable, triblock poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) (PLA‐b‐PCL‐b‐PLA) copolymers and 3‐star‐(PCL‐b‐PLA) block copolymers were synthesized by ring opening polymerization of lactides in the presence of poly(ε‐caprolactone) diol or 3‐star‐poly(ε‐caprolactone) triol as macroinitiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C‐NMR. The formation of block copolymers was confirmed by NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5363–5370, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号