首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triblock copolymers (MPEG‐b‐PCEMA‐b‐PHQHEMA) bearing cinnamoyl and 8‐hydroxyquinoline side groups with different block length are synthesized by a two‐step reversible addition fragmentation chain transfer polymerization of cinnamoyl ethyl methacrylate (CEMA) and 2‐((8‐hydroxyquinolin‐5‐yl)methoxy)ethyl methacrylate (HQHEMA), respectively. The self‐assembly of MPEG‐b‐PCEMA‐b‐PHQHEMA in mixture of THF and ethanol is investigated by varying the ratio of THF and ethanol. Spheric micelles with diameter of 63.7 nm and polydispersity of 0.128 are obtained for MPEG113b‐PCEMA15b‐PHQHEMA17 in THF/ethanol with a volume ratio (v/v) of 5/5. The PCEMA inner shell of the resulted micelles is photo‐crosslinked under UV radiation to give stabilized micelles. The complex reaction of the stabilized micelles with Zn(II) is investigated under different conditions to give zinc(II)‐bis(8‐hydroxyquinoline)(Znq2)‐containing micelles. When the complex reaction is carried out in THF/ethanol (v/v = 5/5) or THF/toluene (v/v = 6/4) with zinc acetate, fluorescent Znq2‐containing micelles are obtained without obvious change in diameters and morphologies. The fluorescent micelles exhibit green emission with λmax at 520 nm. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1056–1064  相似文献   

2.
Rigid cylindrical micelles are made from polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). The PI-PCEMA-PtBA polymer assembles to micelles with PI as the core, PCEMA as the shell, and PtBA as the corona. The cylindrical structure is fixed by photocrosslinking the PCEMA shell, and PCEMA-PtBA nanotubes are obtained by degrading the PI core with ozone (see scheme).  相似文献   

3.
Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, self-assembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films withnanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisoprenc-block-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50 μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass faction of 20% relative to the triblock or the totalPtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrixof PCEMA and Pl. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannelswere formed by extracting out hPtBA with solvent. Alternatively. larger channels were obtained from extracting out hPtBAand hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeabilityconstants ~6 orders of magnitude higher than that of low-density polyethylene films.  相似文献   

4.
We report manipulation of polymer nano‐objects by changing solvents through chemically crosslinking the spherical micelles of poly(3‐(triethoxysilyl)propyl methacrylate)‐block‐polystyrene‐block‐poly(2‐vinylpyridine) (PTEPM‐b‐PS‐b‐P2VP). In methanol, which is a common solvent of PTEPM and P2VP but poor of PS, PTEPM‐b‐PS‐b‐P2VP forms micelles with a PS core. When changing the medium into acidic water, the PTEPM segments further collapse and gelate to form a crosslinked shell outside of the PS core. When the particles are re‐dispersed into tetrahydrofuran (THF), the PS segments are extracted out, producing uniform small cavity of few nanometers in each particle. Thus one sample can be used to generate well‐defined nano‐objects with different appearance by solvent manipulation. The particle structure development has been characterized by transmission electron microscope (TEM), DLS, and 1H NMR. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
A series of supramolecular block copolymers were prepared using poly(styrene)-b-poly(4-vinylpyridine)(PS-b-P4VP) which coordinated with cobalt dodecyl benzene sulfonate (Co(DBS)2) in tetrahydrofuran (THF). Fourier transformation infrared spectroscopy (FTIR), UV-vis absorption spectroscopy (UV) and differential scanning calorimetry (DSC) showed that Co(DBS)2 coordinated to the lone electron pairs of the pyridine nitrogens in the P4VP block and leaded to complexes. The supramolecular block copolymers could self-assemble into nanosized micelles with different shapes and dimensions in THF, depending on the number of Co(DBS)2 groups per 4-vinylpyridine (repeat unit was denoted by n) and the ratio between PS block length and P4VP block length. Transmission electron microscopy (TEM) results showed that when the number of repeat units of P4VP was more than that of PS, micelles with different interesting shapes such as spheres, rods, vesicles, large compound vesicles (LCVs) and the large compound micelles (LCMs) were observed if increasing the content of the Co(DBS)2 in PS-b-P4VP copolymer/THF solution; When the number of repeat units of P4VP was less than that of PS, the micelle morphologies changed from spheres to rods, bi-layer, and LCMs if the Co(DBS)2 content was increased progressively.  相似文献   

6.
Summary: A novel amphiphilic ABCBA-type pentablock copolymer with properties that are sensitive to temperature and pH, poly(2-dimethylaminoethyl methacrylate)-block-poly(2,2,2-trifluoroethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(2,2,2- trifluoroethyl methacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA- b-PTFEMA-b-PCL-b-PTFEMA-b-PDMAEMA), was synthesized via consecutive atom transfer radical polymerizations (ATRPs). The copolymers obtained were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectroscopy, respectively. The aggregation behaviors of the pentablock copolymers in aqueous solution with different pH (pH = 4.0, 7.0 and 8.5) were studied. Transmission electron microscopic images revealed that spherical micelles from self-assembly of the pentablock copolymer were prevalent in all cases. The mean diameters of these micelles increased from 34, 46, to 119 nm when the pH of the aqueous solution decreased from 8.5, 7.0, to 4.0, respectively.  相似文献   

7.
Two copolymers, P(PCEMA-co-MMA) and P(t-BMA-block-PCEMA), were prepared via ATRP using 2-(phenoxycarbonyloxy)ethyl methacrylate (PCEMA) as reactive monomer and methyl methacrylate (MMA) or tert-butyl methacrylate (t-BMA) as co-monomers. Alternatively phenoxycarbonyloxy decorated polymethacrylates were obtained via polymer analogous reaction: P(HEMA) was reacted with phenyl chloroformate to yield P(PCEMA). The highly reactive phenoxycarbonyloxy groups were used for polymer analogous reactions with nucleophiles to obtain polymers with ionic/hydrophilic and hydrophobic side groups. Different amines with long alkyl chains or tertiary amine groups were reacted with phenoxycarbonyloxy decorated polymers and subsequently reacted with methyl iodide to obtain amphipathic polymers with bacteriostatic properties.  相似文献   

8.
Versatile miktoarm three-arm star polymers, (polystyrene)(polyε-caprolactone)2 ((PS)(PCL)2), (PS-b-poly(n-butyl acrylate))(PCL-b-PS-b-poly(n-butyl acrylate))2 ((PS-b-PnBA)(PCL-b-PS-b-PnBA)2) and (PtBA-b-PS)(PCL-b-PtBA-b-PS)2 were synthesized via combination of atom-transfer radical polymerization (ATRP), functional group transformation technique and ring opening polymerization (ROP) using 1,1-dihydroxymethyl-1-(2-bromoisobutyryloxy)methyl ethane (DHB) as a heterofunctional initiator. In the synthesis of (PS)(PCL)2 by combination of ROP of ε-caprolactone (ε-CL) and ATRP, the implementation sequence, ROP followed by ATRP, was proved to be effective to get a well-defined miktoarm star polymer than the reverse one. The two miktoarm star block polymers, (PS-b-PnBA)(PCL-b-PS-b-PnBA)2 and (PtBA-b-PS)(PCL-b-PtBA-b-PS)2, were prepared by one ROP step, one group transformation and ATRP steps using the same initiator. All the polymers have defined structures and their molecular weights are adjustable with good controllability.  相似文献   

9.
We investigated the thin film morphology of two different asymmetric block copolymers (BCP), polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and poly(n-pentyl methacrylate)-block-poly(methyl methacrylate) (PPMA-b-PMMA), loaded with pre-synthesized iron oxide nanoparticles (NP). The chemical composition of the BCP constituents determines the strength of the interaction between polymer chains and nanoparticles. In the case of NP/PS-b-P4VP system, the nanoparticles interact preferentially with the P4VP block and hence localize selectively in the P4VP cylindrical microdomains. However, for the NP/PPMA-b-PMMA system, the nanoparticles have no significant preference for the copolymer blocks and segregate at the polymer/substrate interface. Interestingly, this changes the effective substrate surface energy and hence leads to a remarkable change in domain orientation from parallel to perpendicular with respect to the substrate. These results clearly demonstrate the importance of both enthalpic and entropic factors which determine spatial distribution of NP in BCP films and influence domain orientation.  相似文献   

10.
于新红 《高分子科学》2011,29(3):325-335
We investigated the effects of molecular weight and film thickness on the crystallization and microphase separation in semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) (PS-b-PLLA) thin films, at the early stage of film evolution (when T g < T < T ODT) by in situ hot stage atomic force microscopy. For PS-b-PLLA 1 copolymer which had lower molecular weight and higher PLLA fraction, diffusion-controlled break-out crystallization started easily. For PS-b-PLLA 2 with higher molecular weight, crystallization in nanometer scales occurs in local area. After melting of the two copolymer films, islands were observed at the film surface: PS-b-PLLA 1 film was in a disordered phase mixed state while PS-b-PLLA 2 film formed phase-separated lamellar structure paralleling to the substrate. Crystallization-melting and van der Waals forces drove the island formation in PS-b-PLLA 1 film. Film thickness affected the crystallization rate. Crystals grew very slowly in much thinner film of PS-b-PLLA 1 and remained almost unchanged at long time annealing. The incompatibility between PS and PLLA blocks drove the film fluctuation which subsequently evolved into spinodal-like morphology.  相似文献   

11.
The micellar behavior of PS-b-PDMS, PS-b-PDMS-b-PS linear block and (PS)2(PDMS) miktoarm star copolymers of polystyrene (PS) and polydimethylsiloxane (PDMS) is investigated in DMF, a selective solvent for PS. The linear PS-b-PDMS and star (PS)2(PDMS) copolymers exhibit different macromolecular architectures but similar compositions and total molecular weight, while the linear PS-b-PDMS-b-PS copolymer has the same composition as the diblock and miktoarm star but double their molecular weight. Static, dynamic light scattering and viscometry were used for the structural characterization of the micelles. Aggregation numbers were found to increase in the order PS-b-PDMS-b-PS < (PS)2(PDMS) < PS-b-PDMS. The corona thickness was dependent on the molecular weight of the soluble PS chains. In the case of (PS)2(PDMS), although the core area per PS chain, AC, was significantly lower than that of the linear copolymers, the coronal chains were not significantly stretched. This can be attributed to the stiff nature of the PS chains, which maintains the elongated form of the chains.  相似文献   

12.
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Crystallization-driven self-assembly (CDSA) was employed for the preparation of monodisperse cationic cylindrical nanoparticles with controllable sizes, which were subsequently explored for their effect on antibacterial activity and the mechanical properties of nanocomposite hydrogels. Poly(ɛ-caprolactone)-block-poly(methyl methacrylate)-block-poly[2-(tert-butylamino) ethyl methacrylate] (PCL-b-PMMA-b-PTA) triblock copolymers were synthesized using combined ring-opening and RAFT polymerizations, and then self-assembled into polycationic cylindrical micelles with controllable lengths by epitaxial growth. The polycationic cylinders exhibited intrinsic cell-type-dependent antibacterial capabilities against gram-positive and gram-negative bacteria under physiological conditions, without quaternization or loading of any additional antibiotics. Furthermore, when the cylinders were combined into anionic alginate hydrogel networks, the mechanical response of the hydrogel composite was tunable and enhanced up to 51%, suggesting that cationic polymer fibers with controlled lengths are promising mimics of the fibrous structures in natural extracellular matrix to support scaffolds. Overall, this polymer fiber/hydrogel nanocomposite shows potential as an injectable antibacterial biomaterial, with possible application in implant materials as bacteriostatic agents or bactericides against various infections.  相似文献   

14.
In this paper, we describe an efficiently physical method of electric-field-assisted assembly and alignment of block copolymer micelles. Amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) self-assembles into spherical micelles in water consisting of a core formed by the insoluble PS blocks and a shell formed by the soluble PAA blocks. When applying an alternating voltage to micelles solution dispersed onto a thin gap of coplanar metallic electrode, we generate directional arrays of highly ordered aggregates in long range. The formation of the ordered aggregates is due to the adjustment of interactions between micelles induced by dielectrophoretic forces in alternating electric field. The morphologies and arrays of particles become more regular with increasing of the strength and frequency of electric field. Voltage and frequency of the electric field and other parameters, such as particles concentration and, the viscosity and dielectric constant of the medium, affect the assembly process.  相似文献   

15.
We report a new approach toward preparing self-assembled hydrogen-bonded complexes having vesicle and patched spherical structures from two species of block copolymers in nonselective solvents. Two diblock copolymers, poly(styrene-b-vinyl phenol) (PS-b-PVPh) and poly(methyl methacrylate-b-4-vinylpyridine) (PMMA-b-P4VP), were synthesized through anionic polymerization. The assembly of vesicles from the intermolecular complex formed after mixing PS-b-PVPH with PMMA-b-P4VP in THF was driven by strong hydrogen bonding between the complementary binding sites on the PVPH and P4VP blocks. In contrast, well-defined patched spherical micelles formed after blending PS-b-PVPh with PMMA-b-P4VP in DMF: the weaker hydrogen bonds formed between the PVPh and P4VP blocks in DMF, relative to those in THF, resulted in the formation of spherical micelles having compartmentalized coronas consisting of PS and PMMA blocks.  相似文献   

16.
Polystyrene-block-poly(n-butyl methacrylate) (PS-b-PnBMA) was used to investigate three-dimensional (3D) soft confinement effect on physical aging of the PS block therein. The soft confinement is constructed by phase-separated PnBMA domains, as PnBMA is liquid on the aging temperatures of PS blocks due to its low glass transition temperature. In enthalpy recovery, aging response of PS blocks is represented by a low and broad heat capacity peak associated with an enhanced aging rate with respect to homo-PS, when the aging temperature is relatively low. However, the aging response exhibits opposite characteristics at relatively high temperatures, compared with the results of homo-PS. The phase-separated morphology and thus the soft confinement on PS blocks was confirmed by atomic force microscope imaging using the Peak Force quantitative nanomechanical mapping (QNM) technique. Two local maximums of recovered enthalpy versus aging temperature indicate that two equilibration processes exist during aging of confined PS blocks, within a substantially shorter timescale to the bulk. The 3D soft confinement effect on aging of PS blocks is attributed to dual equilibration mechanisms: one dominates at higher aging temperatures, leading to a restrained aging rate, while the other plays a key role at lower aging temperatures, resulting in accelerated physical aging.  相似文献   

17.
Polystyrene-b-polyisoprene-b-poly(methylmethacrylate) (PS-b-PI-b-PMMA) triblock copolymer was synthesized by sequential anionic polymerization. The as-synthesized triblock copolymer contains side products of inadvertently terminated PS and PS-b-PI precursors. The side products can be effectively removed by semi-prep scale liquid chromatography using multiple injection method to obtain pure PS-b-PI-b-PMMA. It was found that the removed side product contains another polymer species, coupled PS-b-PI, which could not be recognized by size exclusion chromatography (SEC) analysis since the elution peak of the coupled product overlaps with that of PS-b-PI-b-PMMA. This study demonstrates that the size based separation of SEC is often not good enough to characterize complex polymers precisely and interaction chromatography can render unique advantage over SEC analysis.  相似文献   

18.
The formation of spherical micelles in aqueous solutions of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO and poly(acrylic acid)-block-poly(vinyl alcohol), PAA-b-PVOH has been investigated with light scattering-titrations, dynamic and static light scattering, and 1H 2D Nuclear Overhauser Effect Spectroscopy. Complex coacervate core micelles, also called PIC micelles, block ionomer complexes, and interpolyelectrolyte complexes, are formed in thermodynamic equilibrium under charge neutral conditions (pH 8, 1 mM NaNO3, = 25 °C) through electrostatic interaction between the core-forming P2MVP and PAA blocks. 2D 1H NOESY NMR experiments show no cross-correlations between PEO and PVOH blocks, indicating their segregation in the micellar corona. Self-consistent field calculations support the conclusion that these C3Ms are likely to resemble a ‘patched micelle’; that is, micelles featuring a ‘spheres-on-sphere’ morphology.  相似文献   

19.
Controlled free radical polymerization of sugar-carrying methacrylate, 3-O-methacryloyl-1,2 : 5,6-di-O-isopropylidene-d-glucofuranose (MAIpGlc) was achieved by the atom transfer radical polymerization (ATRP) technique with an alkyl halide/copper-complex system in veratrole at 80°C. The time–conversion first-order plot was linear and the number-average molecular weight increased in direct proportion to the ratio of the monomer conversion to the initial initiator concentration, providing PMAIpGlc with a low polydispersity. The sequential addition of the two monomers styrene (S) and MAIpGlc afforded a block copolymer of the type PS-b-PMAIpGlc. The acidolysis of the homo- and block copolymers gave well-defined glucose-carrying water-soluble polymers PMAGlc and PS-b-PMAGlc, respectively. The amphiphilic PS-b-PMAGlc block copolymer exhibited a microdomain surface morphology with spherical PS domains in a PMAGlc matrix. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2473–2481, 1998  相似文献   

20.
This paper describes a new approach towards preparing self‐assembled hydrogen‐bonded complexes that have vesicle and patched spherical structures from two species of block copolymer in non‐selective solvents. The assembly of vesicles from the intermolecular complex formed after mixing polystyrene‐block‐poly(4‐vinyl phenol) (PS‐b‐PVPh) with poly(methyl methacrylate)‐block‐poly(4‐vinylpyridine) (PMMA‐b‐P4VP) in tetrahydrofuran (THF) is driven by strong hydrogen bonding between the complementary binding sites on the PVPh and P4VP blocks. In contrast, well‐defined patched spherical micelles form after blending PS‐b‐PVPh with PMMA‐b‐P4VP in N,N‐dimethylformamide (DMF): weaker hydrogen bonds form between the PVPh and P4VP blocks in DMF, relative to those in THF, which results in the formation of spherical micelles that have compartmentalized coronas that consist of PS and PMMA blocks.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号