首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyclopentadienyl compounds, CpMCl3 (M = Ti, Zr) supported on activated MgCl2 were used for the polymerizations of ethylene in the presence of methylaluminoxane (MAO) or a common alkylaluminium as a cocatalyst. By supporting CpMCl3 on MgCl2, the catalyst activity was increased drastically to show high activity similar to MgCl2‐supported TiCl4 catalysts. The activity of the CpZrCl3 /MgCl2 catalyst was higher than that of the CpTiCl3/MgCl2 one. Both catalysts gave polymers with high molecular weight (Mw) and broad molecular weight distribution (Mw/Mn) in comparison with the corresponding soluble half‐metallocene catalysts.  相似文献   

2.
The surface atomic structure of MgCl2 crystalline particles and MgCl2‐supported Ziegler catalysts was observed by means of high resolution transmission electron microscopy. Step‐terrace surface structures, characteristic of the structure of the MgCl2 crystal, are found in the observed images of MgCl2 particles. The observation of the structure of MgCl2‐supported Ziegler catalysts shows that the MgCl2 crystals are severely deformed by the processes of catalyst preparation. Due to the preparation procedure used the structure of the catalyst changes from crystalline to amorphous.  相似文献   

3.

The MCM‐41 and SiO2 supported TiCl4 and TiCl4/MgCl2 catalysts with different molar ratios of Mg/Ti were synthesized and used for ethylene polymerization under atmospheric pressure. The nanochannels of MCM‐41 serve as nanoscale polymerization reactor and the polyethylene nanofibers were extruded during the reaction. The nanofibers were observed in SEM micrographs of resulting polyethylene. The effect of MgCl2 on catalytic activity and thermal properties of resulting polyethylene is investigated too. In the presence of MgCl2, the catalytic activity increased and more crystalline polyethylene with higher melting points were formed. However, no fibers could be observed in the polyethylene prepared by SiO2 supported catalysts.  相似文献   

4.
Slurry polymerizations of ethylene over vanadium catalysts (based on VCl4 and VOCl3) and their MgCl2(THF)2-supported equivalents were studied. Unsupported vanadium catalysts were found to be unstable while the vanadium active sites deposited on the MgCl2(THF)2 complex are stable. A sharply outlined correlation was found between the concentration of vanadium(III) and catalyst productivity. The high activity and stability of the vanadium catalyst when supported on the magnesium complex is attributed to the increase of resistance to reduction of active vanadium(III) to inactive vanadium(II) by an organoaluminium co-catalyst.  相似文献   

5.
Several CW–V catalysts were prepared by supporting VCl4 on Mg Cl2 with ethyl benzoate and CH–V catalysts prepared by reacting MgCl2.ROH, phthalic anhydride, and VCl4. These vanadium catalysts, activated with TEA (triethyl aluminum)/MPT (methyl-p-toluate) produce mainly (88–96%) refluxing n-heptane insoluble isotactic PP. The active site has $ k_{p,i} = 1580 \left( M {\rm s} \right)^{ - 1}, k_{tr,i}^{\rm A} = 2 \times 10^{ - 3} {\rm s}^{ - 1} , k_{tr}^{\rm H} = 3.8 \times 10^{ - 2} \left( {\rm torr} \right)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} {\rm s}^{ - 1}$ for the isospecific ones and $ k_{p,a} = 58 \left( M {\rm s} \right)^{ - 1} ,k_{tr,a}^{\rm A} = 3 \times 10^{ - 3} {\rm s}^{ -1}$ for the nonspecific sites. Catalyst of VCl3 supported on MgCl2 has comparable productivity as the VCl4/MgCl2 catalyst but catalyst of VCl2 supported on MgCl2 exhibit only one-ninth of the productivity. Extensive comparison has been made between the CW–V and the CW–Ti systems which revealed striking similarities between their polymerization behaviors. MgCl2 exerts profound influence on the stereochemical control of the vanadium ion on its activity for monomer coordination and insertion.  相似文献   

6.
The successive self-nucleation/annealing technique (SSA) by differential scanning calorimetry has been applied to study the heterogeneity of ethylene–hexene-1 copolymers produced with supported catalytic systems of different compositions: highly active supported Ziegler–Natta (Z–N) catalysts—a titanium–magnesium catalyst TiCl4/MgCl2 (TMC) and a vanadium–magnesium catalyst VCl4/MgCl2 (VMC), a supported zirconocene catalyst Me2Si(Ind)2ZrCl2/SiO2 (MAO), and a chromium-oxide catalyst CrO3/SiO2. Comparative data by SSA technique with the same temperature program were obtained for copolymers differed by MWD from narrow to very broad (Mw/Mn = 2.4–54) and short chain branching distribution from narrow (zirconocene catalyst) to very broad (TMC and chromium oxide catalysts). It is demonstrated that copolymers produced with the zirconocene catalyst have the narrowest melting range and do not contain thick lamellae. The widest lamella thickness distribution has been found for a copolymer produced with the chromium-oxide catalyst. Copolymers produced with the supported Z–N catalysts are ranked in the middle with a more narrow lamella thickness distribution for copolymer prepared with VMC as compared with the one produced with TMC. The SSA results are compared with the data on copolymer fractionation by TREF. It is shown that these methods give a good correlation for copolymers with narrow short-chain branching distribution produced with the supported zirconocene catalyst. In the case of copolymers produced with TMC, TREF yields a higher content of the high-branched fractions.  相似文献   

7.
A new generation of MgCl2‐supported catalysts for the polymerization of propene without any external donors was prepared. Two diethers, 9,9‐bis(methoxymethyl)fluorene (for Cat‐A) and 2,2‐dipropyl‐1,3‐dimethoxypropane (for Cat‐B) differing in the bulkiness of alkyl substituents in position 2, have been used as internal donors in MgCl2/TiCl4/diether‐AlR3 catalysts. The weight‐average molecular weights produced with both catalysts were over 3.5×105 at low temperature in slurry polymerization (< 40°C). Cat‐A showed higher activity and produced higher isotactic polypropene than Cat‐B. The activity of both catalysts proved to be dependent on the temperature.  相似文献   

8.
The properties have been examined for Ziegler-Natta catalysts comprising TiCl4 (Ti contents 2.0, 3.4 and 4.2%) supported on MgCl2 activated by dry ball-milling up to 250 hr. The samples have been investigated by measurements of catalytic activity in polymerization, of surface area and of some structural parameters related to the crystal disorder introduced by ball-milling. It is shown that the TiCl4 content affects the activation; a relationship has been found between the crystal disorder of the MgCl2 support and the catalytic activity.  相似文献   

9.
Vaporization of MgCl2 and other metal halides results in monomeric gas-phase species. Cocondensation of these species with organic diluents such as heptane yields highly activated solids which are precursors to MgCl2 supported “high-mileage” catalysts for olefin polymerization. These catalysts, prepared by treatment with TiCl4 followed by standard activation with aluminum alkyls display high activity for ethylene and propylene polymerization. MgCl2 can also be evaporated into neat TiCl4 to give a related catalyst. The concentration of MgCl2 in the diluent affects catalyst properties as does the nature of the diluent. TiCl3, 3TiCl3 · AlCl3, VCl3 and other metal halides are subject to similar activation.  相似文献   

10.
This paper is a comparative study of the performance of TiCl4 catalysts supported on recrystallized MgCl2 through different techniques for the polymerization of ethylene, propylene and ethylene-propylene copolymers. MgCl2 was dissolved in 1-hexanol and recrystallized through solvent evaporation, quick cooling and precipitation with SiCl4. The effect of the recrystallization conditions during the catalyst preparation on the chemical composition of catalysts was discussed with the help of IR spectroscopy. The variations of dealcoholation levels due to the different recrystallization techniques highly influenced the catalytic activity. The catalyst obtained through SiCl4 recrystallization was not only the most active, but it also showed the highest isotacticity indexes for propylene polymerization.  相似文献   

11.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

12.
Propylene polymerization on TiCl4/donor/MgCl2 (donor = ethyl benzoate, dibutyl phthalate, diisobutyl phthalate, diethyl 2,3-diisopropylsuccinate) supported catalysts is considered. The states of the donors in the catalysts have been investigated by diffuse reflectance IR spectroscopy. Data characterizing the distribution of the donors and the active component (TiCl4) on the support surface have been obtained. Molecular weight distribution data for polypropylene are presented. The molecular weight distribution of polypropylene depends on the location of the donor and TiCl4 molecules.  相似文献   

13.
The polymerizations of propylene and ethylene with two postmetallocene catalysts [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra(perfluorophenyl)-1,3-dioxolane-4,5-dimethanol]TiCl2 · MgCl2 and [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra-(perfluorophenyl-1,3-dioxolane-4,5-dimethanol]TiCl2· (LiCl)2 are studied. The first catalyst shows higher activity in both reactions and forms a lower molecular mass PP. This PP is characterized by a wide molecular-mass distribution that can be described by a set of five or six Flory components with different average molecular masses. Along with heterogeneity with respect to kinetic parameters, there is heterogeneity with respect to stereospecificity. Some of the sites form a high-molecular-mass highly isotactic polymer whose melting point is ≥150°C, whereas other sites produce syndiotactic and atactic PPs. For the most isospecific sites, a stereocontrol mechanism similar to the mechanism typical for metallocene catalysts with C 1-symmetry is advanced. The catalysts under study are composed of the [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra(perfluorophenyl)-1,3-dioxolane-4,5-dimethanol]TiCl2 complex supported on LiCl and MgCl2, respectively.  相似文献   

14.
The behavior in propylene polymerization of divalent titanium compounds of type [η6-areneTiAl2Cl8], both as such and supported on activated MgCl2, has been studied and compared to that of the simple catalyst MgCl2/TiCl4. Triethylaluminium was used as cocatalyst. The Ti–arene complexes were active both in the presence and in the absence of hydrogen, in contrast to earlier reports that divalent titanium species are active for ethylene but not for propylene polymerization. 13C-NMR analysis of low molecular weight polymer fractions indicated that the hydrogen activation effect observed for the MgCl2-supported catalysts should be ascribed to reactivation of 2,1-inserted (“dormant”) sites via chain transfer, rather than to (re)generation of active trivalent Ti via oxidative addition of hydrogen to divalent species. Decay in activity during polymerization was observed with both catalysts, indicating that for MgCl2/TiCl4 catalysts decay is not necessarily due to overreduction of Ti to the divalent state during polymerization. In ethylene polymerization both catalysts exhibited an acceleration rather than a decay profile. It is suggested that the observed decay in activity during propylene polymerization may be due to the formation of clustered species that are too hindered for propylene but that allow ethylene polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2645–2652, 1997  相似文献   

15.
��־ǿ 《高分子科学》2013,31(1):110-121
A supported TiCl4/MgCl2 catalyst without internal electron donor (O-cat) was prepared firstly. Then it was modified by 2,6-diisopropylphenol to make a novel modified catalyst (M-cat). These two catalysts were used to catalyze ethylene/1-hexene copolymerization and 1-hexene homopolymerization. The influence of cocatalyst and hydrogen on the catalytic behavior of these two catalysts was investigated. In ethylene/1-hexene copolymerization, the introduction of 2,6-iPr2C6H3O-groups did not deactivate the supported TiCl4/MgCl2 catalyst. Although the 1-hexene incorporation in ethylene/1-hexene copolymer prepared by M-cat was lower than that prepared by O-cat, the composition distribution of the former was narrower than that of the latter. Methylaluminoxane (MAO) was a more effective activator for M-cat than triisobutyl-aluminium (TIBA). MAO led to higher yield and more uniform chain structure. In 1-hexene homopolymerization, the presence of 2,6-iPr2C6H3O-groups lowered the propagation rate constants. Two types of active centers with a chemically bonded 2,6-iPr2C6H3O-group were proposed to explain the observed phenomena in M-cat.  相似文献   

16.
In this work, a combination of experimental and computational approaches on the isospecific role of monoester-type internal electron donors (ED) such as phenylpropionate (PhP), ethylheptanoate (EH), methylbenzoate (MB), ethylbenzoate (EB) for TiCl4/ED/MgCl2 Ziegler-Natta catalysts had been performed. The propylene polymerization results revealed that the isospecificity of catalysts increases in the following order: PhP < EH < MB < EB. The subsequent molecular modeling on the electronic properties of the donors and two kinds of cluster model catalysts: TiCl4/ED/MgCl2 and TiCl4/ED/(MgCl2)4 based on density functional theory (DFT) method was carried out. Two kinds of ED coordination on MgCl2 clusters through either O or  O within the monoester-type ED had been disclosed. A perfect correlation between the dipole moment of ED, the coordination bond length of O … Mg, the competitive coordination from  O with Mg ion and the isospecificity of the catalysts had been established.  相似文献   

17.
Several supported zirconocene catalysts were prepared by using MgCl_2·6H_2O as a precursor forproducing an active support. Such catalysts combined with methylaluminoxane (MAO) obtained by reactingMgCl_2·6H_2O with AlMe_3 show good activity for ethylene polymerization similar to that of anhydrousMgCl_2 supported zirconocene catalyst.  相似文献   

18.
Polyolefins represented by polyethylene (PE) and polypropylene (PP) are indispensable materials in our daily lives. TiCl3 catalysts, established by Ziegler and Natta in the 1950s, led to the births of the polyolefin industries. However, the activities and stereospecificities of the TiCl3 catalysts were so low that steps for removing catalyst residues and low stereoregular PP were needed in the production of PE and PP. Our discovery of MgCl2‐supported TiCl4 catalysts led to more than 100 times higher activities and extremely high stereospecificities, which enabled us to dispense with the steps for the removals, meaning the process innovation. Furthermore, they narrowed the molecular weight and composition distributions of PE and PP, enabling us to control the polymer structures precisely and create such new products as very low density PE or heat‐sealable film at low temperature. The typical example of the product innovations by the combination of the high stereospecificity and the narrowed composition distribution is high‐performance impact copolymer used for an automobile bumper that used to be made of metal. These process and product innovations established these polyolefin industries. The latest MgCl2‐supported TiCl4 catalyst is very close to perfect control of isotactic PP structure and is expected to bring about further innovations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1–8, 2004  相似文献   

19.
Data on ethylene polymerization on homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl Fe(II) complexes activated by trialkylaluminums are considered (activity, the molecular-weight characteristics of polymers, the number of active sites, and the propagation rate constants). Unlike homogeneous systems, the supported catalysts prepared with the use of various carriers (SiO2, Al2O3, and MgCl2) exhibited high stability and activity at 70–80°C and produced high-molecular-weight polyethylene with a broad molecular-weight distribution (MWD). The molecular weights and MWDs of polymers and the propagation rate constant depended on the nature of the carrier only slightly. The reasons for an unusual effect of an increase in the activity of the supported catalysts in ethylene polymerization in the presence of hydrogen are discussed.  相似文献   

20.
A number of TiCl4 catalysts supported on MgCl2 which was activated by the recrystallization method using different alcohols were prepared with ethyl benzoate or dibutyl phthalate as the internal electron donor. All the catalysts were characterized by BET, x-ray diffraction, and hydrolysis–GC analysis. Kinetics of polymerization of 1-octene was studied with three of the above catalysts (having different internal electron donors) activated by AlEt3. The rate of polymerization increased linearly with increasing temperature, and catalyst and monomer concentrations. From the Arrhenius plot, the overall activation energies of polymerization were determined and the dependence of rate on the AlEt3 concentration could be explained by the Langmuir-Hinshelwood mechanism. 13C-NMR was used to study the effect of internal electron donors on the % isotacticity of poly(1-octene). The catalytic activities of all the catalysts were compared in 1-octene polymerization. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号