首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The star-shaped organic/inorganic hybrid poly(l-lactide) (PLLA) based on polyhedral oligomeric silsesquioxane (POSS) was prepared using octa(3-hydroxypropyl) polyhedral oligomeric silsesquioxane as initiator via ring-opening polymerization (ROP) of l-lactide (LLA). The molecular weight of POSS-containing star-shaped hybrid PLLA (POSSPLLA) can be well controlled by the feed ratio of LLA to initiator. The POSSPLLA was further functionalized into the macromolecular reversible addition-fragmentation transfer (RAFT) agent for the polymerization of N-isopropylacrylamide (NIPAM), leading to the POSS-containing star-shaped organic/inorganic hybrid amphiphilic block copolymers, poly(l-lactide)–block–poly(N-isopropylacrylamide) (POSS(PLLA–b–PNIPAM)). The self-assembly behavior of POSS(PLLA–b–PNIPAM) block copolymers in aqueous solution was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). DLS showed the PNIPAM block in the aggregates is temperature-responsive and its phase-transition is reversible. TEM proved that the star-shaped POSS(PLLA–b–PNIPAM) amphiphilic block copolymers can self-assemble into the vesicles in aqueous solution. The vesicular wall and coronas are composed of the hydrophobic POSS core and PLLA, and hydrophilic PNIPAM blocks, respectively. Therefore, POSSPLLA and POSS(PLLA–b–PNIPAM) block copolymers, as a class of novel organic–inorganic hybrid materials with the advantageous properties, can be potentially used in biological and medical fields.  相似文献   

2.
Novel bio-based and biodegradable block copolymers were synthesized by "click" reaction between poly(L-lactide)(PLLA) and polyamide 4(PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS.  相似文献   

3.
Random and block copolymerizations of L ‐ or D ‐lactide with ε‐caprolactone (CL) were performed with a novel anionic initiator, (C5Me5)2SmMe(THF), and they resulted in partial epimerization, generating D ,L ‐ or meso‐lactide polymers with enhanced biodegradability. A blend of PLLA‐r‐PCL [82/18; PLLA = poly(L ‐LA) and PCL = poly(ε‐caprolactone)] and PDLA‐r‐PCL [79/21; PDLA = poly(D ‐LA)] prepared by the solution‐casting method generated a stereocomplex, the melting temperature of which was about 40 °C higher than that of the nonblended copolymers. A blend of PLLA‐b‐PCL (85/15) and PDLA‐b‐PCL (82/18) showed a lower elongation at break and a remarkably higher tensile modulus than stereocomplexes of PLLA‐r‐PCL/PDLA‐r‐PCL and PLLA/PDLA. The biodegradability of a blend of PLLA‐r‐PCL (65/35) and PDLA‐r‐PCL (66/34) with proteinase K was higher than that of PLLA‐b‐PCL (47/53) and PDLA‐b‐PCL (45/55), the degradability of which was higher than that of a PLLA/PDLA blend. A blend film of PLLA‐r‐PDLLA (69/31)/PDLA‐r‐PDLLA (68/32) exhibited higher degradability than a film of PLLA/PDLLA [PDLLA = poly(D ,L ‐LA)]. A stereocomplex of PLLA‐r‐PCL‐r‐PDMO [80/18/2; PDMO = poly(L ‐3,D ,L ‐6‐dimethyl‐2,5‐morpholinedion)] with PDLA‐r‐PCL‐r‐PDMO (81/17/2) showed higher degradability than PLLA‐r‐PDMO (98/2)/PDLA‐r‐PDMO (98/2) and PLLA‐r‐PCL (82/18)/PDLA‐r‐PCL (79/21) blends. The tensile modulus of a blend of PLLA‐r‐PCL‐r‐PDMO and PDLA‐r‐PCL‐r‐PDMO was much higher than that of a blend of PLLA‐r‐PDMO and PDLA‐r‐PDMO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 438–454, 2005  相似文献   

4.
Summary: Stereorregular polylactides such as poly (L-lactide) (PLLA) or poly (D-lactide) result from polymerization of optically pure lactides and are semicrystalline. Optically non-active poly(D,L-lactide) (PDLLA) can be regarded as random or atactic copolymers, show a random moiety distribution, and are completely amorphous. In this work three phases, comprising mobile amorphous fraction (MAF, χMA), rigid amorphous fraction (RAF, χRA) and crystalline fraction (χc) were determined in PLLA. It will be shown that RAP fraction not only elevates Tg but also increases the dynamic fragility (m) of polylactide chains around the Tg. These results agree with reported cases in which topologycal constraints inhibit longer range dynamics and suggest a smaller length scale of cooperativity of chains in confined environments.  相似文献   

5.
Enzymatic transformations into cyclic oligomers were carried out with the objective of developing chemical recycling of poly(lactic acid)s, such as poly(D,L-lactic acid) (PDLLA), poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA), which are typical biodegradable polymers. They were degraded by lipase in an organic solvent to produce the corresponding cyclic oligomer with a molecular weight of several hundreds. PDLLA (with a Mw of 84,000) was quantitatively transformed into cyclic oligomers by lipase RM (Lipozyme RM IM) in chloroform/hexane at 60 degrees C. PLLA (with a Mw of 120,000) was transformed into cyclic oligomer by lipase CA (Novozym 435) at a higher temperature of 100 degrees C in o-xylene. The oligomer structure was identified by 1H and 13C NMR spectroscopy and MALDI-TOF (matrix assisted laser desorption/ionization-time-of-flight) mass spectrometry.  相似文献   

6.
Stereocomplex-type polylactide (SC-PLA) consisting of alternatively arranged poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains has gained a good reputation as a sustainable engineering plastic with outstanding heat resistance and durability,however its practical applications have been considerably hindered by the weak SC crystallizability.Current methods used to enhance the SC crystallizability are generally achieved at the expense of the precious bio-renewability and/or bio-degradability of PLAs.Herein,we demonstrate a feasible method to address these challenges by incorporating small amounts of poly(D,L-lactide) (PDLLA) into linear high-molecular-weight PLLA/PDLA blends.The results show that the incorporation of the atactic PDLLA leads to a significant enhancement in the SC crystallizability because its good miscibility with the isotactic PLAs makes it possible to greatly improve the chain mixing between PLLA and PDLA as an effective compatibilizer.Meanwhile,the melt stability (i.e.,the stability of PLLA/PDLA chain assemblies upon melting) could also be improved substantially.Very intriguingly,SC crystallites are predominantly formed with increasing content and molecular weight of PDLLA.More notably,exclusive SC crystallization can be obtained in the racemic blends with 20 wt% PDLLA having weight-average molecular weight of above 1 ×10s g/mol,where the chain mixing level and intermolecular interactions between the PLA enantiomers could be strikingly enhanced.Overall,our work could not only open a promising horizon for the development of all SC-PLA-based engineering plastic with exceptional SC crystallizability but also give a fundamental insight into the crucial role of PDLLA in improving the SC crystallizability of PLLA/PDLA blends.  相似文献   

7.
The effect of crystallization of a hydrophobic poly(lactide) block on the self-organization of biocompatible and biodegradable amphiphilic poly(lactide)-block-poly(ethylene oxide) (PLA-b-PEO) copolymers in a dilute aqueous solution has been investigated. It was demonstrated that the co-crystallization of poly(L,L-lactide) [P(L,L)LA] and poly(d,d-lactide) [P(d,d)LA] chains under equimolar mixing of P(L,L)LA46-b-PEO113 and P(d,d)LA56-b-PEO113 copolymers resulted in the formation of stable and spontaneously water-redispersible stereocomplex micelles with semicrystalline P(L,L)LA/P(d,d)LA cores. It was shown that the P(L,L)LA46 / P(d,d)LA56-b-PEO113 stereo-complex micelles produced by dialysis can be potential vehicles for the anticancer agent oxaliplatin  相似文献   

8.
Amphiphilic triblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(l,l-lactide) (PLLA) blocks, were used as the matrix material for the preparation of tetracycline-loaded microspheres. The morphology and thermal properties of the biodegradable microspheres were evaluated. SEM showed the predominance of the spherical shape, however, it was possible to distinguish three patterns: rough or smooth surface or uneven collapsed volume. The FTIR analysis indicated good mechanical stability and structural integrity of the PLLA-PEG-PLLA copolymer??s microspheres enclosing tetracycline. By thermal analysis it was possible to see the marginal influence of tetracycline on the glass transition and melting temperatures of the PLLA-PEG-PLLA triblock copolymer, while the results by TG indicated the presence of tetracycline in the inner structure of the microspheres, which thermal decomposition leading to char formation was triggered by the drug??s presence.  相似文献   

9.
Using differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and Fourier transformed infrared spectroscopy (FTIR), upper critical solution temperature (UCST) phase behavior with immiscibility–miscibility transformation in blends of poly(ethylene succinate) (PESu) with poly(lactic acid)s (PLAs), such as poly(D ,L ‐lactic acid) (PDLLA), poly(L ‐lactic acid) (PLLA), poly(D ‐lactic acid) (PDLA), differing in D/L configurations and molecular weights were investigated. All three binary blends of PDLLA/PESu, PLLA/PESu, and PESu/PDLA exhibit UCST behavior, which means they are immiscible at ambient temperature but can become miscible upon heating to higher temperatures at 240–268 °C depending on molecular weights. The PLLAs/PESu blends at UCST could be reverted back to the original phase‐separated morphology, as proven by solvent redissolution. The blends upon quenching from above UCST could be frozen into a quasi‐miscible state, where the Flory‐Huggins interaction parameter (χ12) was determined to be a negative value (by melting point depression technique). The interaction between PDLLA and PESu in blend resulted in significant reduction in spherulite growth rate of PESu. Furthermore, blends of PESu with lower molecular weight PLLA or PDLA (Mw of PLLA and PDLA are 152,000 and 124,000 g/mol, respectively), instead of the higher Mw of PDLLA (Mw of PDLLA = 157,000 g/mol), are immiscible with UCST phase behavior, which are affected by molecular weights rather than the ratio of L/D monomer in the chemical structure of PLAs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1135–1147, 2010  相似文献   

10.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

11.
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006  相似文献   

12.
羟乙基壳聚糖的合成及其与聚乳酸的相容性   总被引:2,自引:0,他引:2  
本文以异丙醇为溶剂,碱化壳聚糖与2-氯乙醇反应制备了羟乙基壳聚糖,对产物的结构与性能进行了分析表征;然后以二甲基亚砜为溶剂,采用溶液共混法制备了一系列不同组成的壳聚糖/聚乳酸和羟乙基壳聚糖/聚乳酸复合膜,对两组分间的相容性进行了研究。结果表明,羟乙基化反应在-OH和-NH2上均有发生,壳聚糖单元糖环上的羟乙基取代度为2.46;改性后,壳聚糖结晶性能和起始热分解温度下降,溶解性能得到改善。复合膜的电镜结果显示,在壳聚糖/聚乳酸复合膜中,相分离现象显著存在,壳聚糖在聚乳酸基体中的分散不均匀,有团聚现象,随着壳聚糖含量增加,两组分间的相分离程度增大,团聚现象更为严重,当壳聚糖含量达到50%时,已难以制备完整的复合膜;与之相反,羟乙基壳聚糖/聚乳酸复合膜中两种组分之间的相容性有所改善,相分离现象不明显,并且,当羟乙基壳聚糖含量从10%增加到50%,复合膜中两种组分之间的相容性变化不大。  相似文献   

13.
Poly(l-lactide) (PLLA) is an extensively employed biodegradable semicrystalline polymer with usage from implantable medical devices and drug release matrices to environmentally friendly packaging materials. Since the morphology and crystallinity considerably determine the application field, PLLA samples with a large variation in crystallinity (going from below 20% to over 70%) were prepared by different procedures. Subsequent differences in morphology, crystallinity and thermal properties were followed by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD) measurements and differential scanning calorimetry (DSC). The value of the enthalpy of melting of a perfectly (100%) crystalline PLLA was determined (ΔHf = 115.7?J/g).  相似文献   

14.
Polymerization of L ‐lactide (LA) was performed in the presence of trifluoromethanesulfonic acid (CF3SO3H) via an activated monomer mechanism to synthesize various block copolymers composed of polyethyleneglycol (PEG) and poly(L ‐lactide) (PLLA). The PLLAs obtained had molecular weights close to theoretical values calculated from LA/PEG molar ratios and exhibited monomodal GPC curves. A 1H NMR spectroscopic study showed that the LA carbonyl carbon signal exhibited a change in chemical shift to lower field, caused by electron delocalization of the carbonyl carbon by CF3SO3H. We successfully prepared PEG and PLLA block copolymers using this activated monomer mechanism. We concluded that synthesis proceeded by LA ring‐opening polymerization caused by PEG in the presence of CF3SO3H to yield PEG and PLLA block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5917–5922, 2009  相似文献   

15.
Because poly(L ‐lactic acid) (PLLA) is a biodegradable polyester with low immunogenicity and good biocompatibility, it is used as a biomaterial. However, hydrophobic PLLA does not have any reactive groups. Thus, its application is limited. To increase the hydrophilicity of PLLA and accelerate its degradation rate, functionalized pendant groups and blocks were introduced through copolymerization with citric acid and poly(ethylene glycol) (PEG), respectively. This article describes the synthesis and characterization of poly(L ‐lactic‐co‐citric acid) (PLCA)‐PLLA and PLCA‐PEG multiblock copolymers. The results indicated that the hydrolysis rate was enhanced, and the hydrophilicity was improved because of the incorporation of carboxyl groups in PLCA‐PLLA. The joining of the PEG block led to improved hydrophilicity of PLCA, and the degradation rate of PLCA‐PEG accelerated as compared with that of PLCA‐PLLA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2073–2081, 2003  相似文献   

16.
Novel pH sensitive biodegradable block copolymers (MPEG-PDLLA-OSM) composed of mono-methoxy poly(ethylene glycol) (MPEG), poly (D,L-lactide) (PDLLA) and sulfamethazine oligomer (OSM) were synthesized via ring-opening polymerization and a dicyclohexyl carboimide (DCC) coupling reaction. These copolymers had a relatively low critical micelle concentration (CMC) due to the strong hydrophobic properties of non-ionized OSM at pH 7.0. Also, the pH sensitive block copolymers showed the micelle-unimer transition due to the ionization-non-ionization of OSM in the pH range (pH 7.2-8.4) above the CMC. Due to the pH sensitive properties of the block copolymer, the hydrophobic drug paclitaxel (PTX) was incorporated into a pH sensitive block copolymer micelle by the pH induced micellization method, without using an organic solvent. The block copolymer micelle prepared by pH induced micellization showed a relatively high PTX loading efficiency, and good stability for 2 d at 37 degrees C. Furthermore, the PTX loaded micelle showed a sustained release of PTX with a small burst in vitro over 2 d. The present results suggest that the pH induced micellization method due to the micelle-unimer transition of the pH sensitive block copolymer would be a novel and valuable drug incorporation tool for hydrophobic and protein drugs, since no organic solvent is involved in the formulation.  相似文献   

17.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

18.
Tri- and pentablock amphiphilic copolymers containing hydrophobic poly(D,L-lactide) block(s) and hydrophilic polyethers were synthesized in order to obtain new precursor architectures suitable for drug delivery systems. Polyglycidol-6-poly(ethylene oxide)-b-poly(D,L-lactide) possess high hydroxyl functionality provided by the linear polyglycidol block. Thus very stable hydroxyl functionalized micelles in aqueous media were obtained. On the other hand poly(D,L-lactide)-b-poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(D,L-lactide) form temperature sensitive aggregates. The copolymers obtained were analyzed by SEC and NMR, and their aqueous solution properties were followed by cloud point measurements and determination of critical micellization temperature. TEM was used for particles visualization.  相似文献   

19.
The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a "model drug". These copolymers were synthesized from poly (ethylene glycol) (PEG) and l-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(l-lactide) (PLLA) block lengths (15–280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2×105 to 1.9×105 on the PLLA content in the copolymer and on the micelle configuration was also discussed. The contribution of NaCl salt to increasing the partition of pyrene into a micellar phase was observed.  相似文献   

20.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号