首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new monomer α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (EMTFU) was synthesized from 5-fluorouracil (5-FU) and α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl chloride (EMTC). Poly(α-ethoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(EMTFU)], poly(α-ethoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-acrylic acid) [poly(EMTFU-co-AA)], and poly(α-ethoxy-3,6-endomethylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(EMTFU-co-VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as the photoinitiator. The synthesized EMTFU and its polymers were identified by Fourier transfer infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of EMTFU in poly(EMTFU-co-AA) and poly(EMTFU-co-VAc) determined by elemental analysis were 46 and 70 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range of 17,200–20,900. The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and AC2F as a normal cell line. The cytotoxicities of 5-FU and synthesized samples against cancer cell lines increased in following orders: 5-FU ≈ EMTFU > poly(EMTFU-co-AA) > poly(EMTFU) > poly(EMTFU-co-VAc). The in vivo antitumor activities of the synthesized samples against mice bearing the sarcoma 180 tumor cell line were evaluated. The in vivo antitumor activities of EMTFU and its polymers were greater than those of 5-FU at a dosage of 80 mg/kg. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2985–2992, 1998  相似文献   

2.
A new monomer, maleimidoethanoyl‐5‐fluorouracil (MIEFU), was synthesized by the reaction of maleimidoethanoyl chloride and 5‐fluorouracil (5‐FU). The homopolymer of MIEFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and elemental analysis. The contents of the MIEFU units in poly(MIEFU‐co‐AA) and poly(MIEFU‐co‐VAc) were 18 and 30 mol %, respectively. The number‐average molecular weights of the synthesized polymers, as determined by gel permeation chromatography, ranged from 4900 to 9800. The in vitro cytotoxicities of the samples against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the following order: 5‐FU ≥ MIEFU > poly(MIEFU) > poly(MIEFU‐co‐AA) > poly(MIEFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all the doses tested. The inhibitions of the SV40 DNA replication of the samples were much greater than that of the control. The synthesized monomer and polymers showed more antiangiogenesis activity than the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1247–1256, 2000  相似文献   

3.
The new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETEFU), was synthesized from 5‐fluorouracil (5‐FU) and 3,6‐endo‐methylene‐1,2,3,6‐tetrahydophthalimidoethanoyl chloride (ETEC). Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerization reactions using 2,2‐dimethoxy‐2‐phenylacetophenone (DMP) as the photoinitiator. The synthesized ETEFU and polymers were identified by FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The contents of ETEFU units in poly(ETEFU‐co‐AA) and poly(ETEFU‐co‐VAc) were 20 and 17 mol%, respectively. The number‐average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were 4,600 to 10,700 g mol−1. In vitro cytotoxicities of samples were evaluated with cancer cell lines [mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937)] and a normal cell line [mouse liver cells (AC2F)]. Cytotoxicities of 5‐FU and synthesized samples against the cancer cell lines were ranked as follows: ETEFU > poly(ETEFU) > 5‐FU > poly(ETEFU‐co‐AA) > poly(ETEFU‐co‐VAc). The in vivo antitumor activities of poly(ETEFU) and poly(ETEFU‐co‐AA) against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses except for the activity of poly(ETEFU) at 0.8 mg/kg. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1589–1595, 1999  相似文献   

4.
A new 5′-O-AZT prodrug was synthesized by conjugating 3′-azido-2′,3′-dideoxythymidine (AZT) with poly(oxyethylene H-phosphonate) at room temperature under Atherton-Todd reaction conditions. The acute toxicity of poly(5′-O-AZT-oxyethylene phosphate) was reduced significantly in comparison with non-immobilized AZT.  相似文献   

5.
The new monomer, α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (MMTFU), was synthesized from 5-fluorouracil (5-FU) and α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl chloride (MMTC). Poly(α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil) [poly(MMTFU)], poly(α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-acrylicco-AA), and poly(α-methoxy-3,6-endo-methylene-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil-co-vinyl acetate) [poly(MMTFU-co-VAc)] were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylacetophenone (DMP) as the photoinitiator. The synthesized MMTFU and the polymers were identified by FT-IR, 1H-NMR, and 13C-NMR spectroscopies. The contents of MMTFU in poly(MMTFU-co-AA) and poly(MMTFU-co-VAc) determined by elemental analysis were 63 and 57 mol %, respectively. The number average molecular weights and polydispersity indices of synthesized polymers determined with GPC were in range of 7,700–19,100 and 1.6–2.7. The in vitro cytotoxicities of samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line. The cytotoxicities of 5-FU and synthesized samples against cancer cell lines increased in following orders: 5-FU > MMTFU > poly(MMTFU) > poly(MMTFU-co-AA) > poly(MMTFU-co-VAc). The in vivo antitumor activities of the synthesized samples against mice bearing the sarcoma 180 tumor cell line were evaluated. The in vivo antitumor activities of the polymers were greater than that of 5-FU at a dose of 80 mg/kg. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1625–1632, 1998  相似文献   

6.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐co‐VAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   

7.
Iodine azide adds to cyclohexene in acetonitrile or 4:1 methylene chloride/acetonitrile to give trans-1-azido-2-iodocyclohexane. In methylene chloride this reaction gives a mixture of the cis-and trans-iodoazides owing to competing radical addition. Iodine azide adds to 1-hexene in acetonitrile by an ionic mechanism to give a 3:1 mixture of the 2-azido-1-azido- and 1-azido-2-iodohexanes. Dehydroiodination of the model iodoazides proceeds smoothly with potassium t-butoxide in diethyl ether or THF in the presence of 5 mol % 18-crown-6 at room temperature, giving in the previous example a mixture of 2-azido- and trans-1-azidohexenes. Polybutadiene, carboxyterminated poly(acrylonitrile-co-butadiene), and hydroxy-terminated polybutadiene gave iodoazide derivatives with up to 96% of the theoretical maximum nitrogen content and strong azide IR absorption. High azidoiodination gave polymer with N3/I ratios slightly higher than unity while low percent azidoiodination led to polymer with N3/I ratios of as low as 2:3. All of the nitrogen introduced was in the form of azide function. Dehydroiodination gave polymers with vinyl azide functionality and caused loss of some of the azide groups. All the azidoiodinated polymers decomposed between 120 and 160°C. The dehydroiodinated materials were less stable, decomposing between 100 and 150°C. The temperature of initial decomposition decreased as azide content increased. Polymers with >55–60% of the theoretical maximum azide content were shock sensitive.  相似文献   

8.
A number of 5′-O-dicarboxylic fatty acyl monoester derivatives of 3′-azido-3′-deoxythymidine (zidovudine, AZT), 2′,3′-didehydro-2′,3′-dideoxythymidine (stavudine, d4T), and 3′-fluoro-3′-deoxythymidine (alovudine, FLT) were synthesized to improve the lipophilicity and potentially the cellular delivery of parent polar 2′,3′-dideoxynucleoside (ddN) analogs. The compounds were evaluated for their anti-HIV activity. Three different fatty acids with varying chain length of suberic acid (octanedioic acid), sebacic acid (decanedioic acid), and dodecanedioic acid were used for the conjugation with the nucleosides. The compounds were evaluated for anti-HIV activity and cytotoxicity. All dicarboxylic ester conjugates of nucleosides exhibited significantly higher anti-HIV activity than that of the corresponding parent nucleoside analogs. Among all the tested conjugates, 5′-O-suberate derivative of AZT (EC50 = 0.10 nM) was found to be the most potent compound and showed 80-fold higher anti-HIV activity than AZT without any significant toxicity (TC50 >500 nM).  相似文献   

9.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

10.
The new monomer, α-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil (EETFU), was synthesized from 5-fluorouracil (5-FU) and α-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl chloride. Its homopolymer and copolymers with acrylic acid (AA) and vinyl acetate (VAc) were synthesized by photopolymerizations using 2,2-dimethoxy-2-phenylaceto-phenone. The synthesized samples were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopes, elemental analysis, and gel permeation chromatography. The EETFU contents in poly(EETFU-co-AA) and poly(EETFU-co-VAc) were 40 and 37 mol %, respectively. The number average molecular weights were in range from 8,400 to 10,300. The in vitro cytotoxicities of synthesized samples were evaluated against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line. The range of IC50 values obtained from the in vitro test for synthesized samples were 0.03–0.16 µg/mL against cancer cell lines. The in vitro cytotoxicities of polymers were beter than 5-FU. The in vivo antitumor activities of synthesized monomer and polymers were also investigated by mice bearing the sarcoma 180 tumor cells. The in vivo antitumor activities of the synthesized monomer and polymers were greater than those of 5-FU at corresponding dosage concentrations. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2619–2627, 1999  相似文献   

11.
Five novel phosphonated mono‐ and dimethacrylate monomers have been synthesized by two different routes. Monomers 1 and 2 were synthesized by reactions of methacryloyl chloride with diethyl (2‐hydroxyphenyl) phosphonate or tetraethyl (2,5‐dihydroxy‐1,4‐phenylene) bisphosphonate; monomers 3 and 4 by reactions of α‐(chloromethyl)acryloyl chloride (CMAC) first with dimethyl (2‐hydroxyethyl) phosphonate and then with benzoic or formic acids. The reaction of CMAC with two moles of dimethyl (2‐hydroxyethyl) phosphonate gave monomer 5 . Thermal homopolymerization of monomers 1 , 3 , 4 , and 5 and copolymerization of monomer 1 with methyl methacrylate (MMA) were investigated using azobisisobutyronitrile (AIBN) at 60 °C. Glass transition temperatures were observed for poly‐ 1 , poly(MMA‐co‐ 1 ) (50:50), poly(MMA‐co‐ 1 ) (90:10), PMMA, poly‐ 3 , and poly‐ 5 at 52, 90, 99, 129, 50, and 70 °C, respectively. TGA analysis of these polymers indicated formation of char on combustion. Homo‐ and/or copolymerization behavior of the synthesized monomers with 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane (Bis‐GMA) were investigated with photodifferential scanning calorimetry. The maximum rate of polymerizations decreased in the following order: Bis‐GMA~ 3 > 1 > 4 > 5 . The conversions of monomers 1 , 3 , 4 , and 5 (73.9, 85.9, 98.2, and 62.2%) were very high compared with Bis‐GMA (40.5%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5737–5746, 2009  相似文献   

12.
A novel phosphonic acid containing bisphenol was successfully synthesized from phenolphthalein and m‐aminophenylphosphonic acid. A series of homo‐ and copoly‐(arylene ether)s containing phosphonic acid groups were prepared by solution nucleophilic polycondensation. These phosphonic acid containing polymers can readily be dissolved in common organic solvents, such as dimethyl sulfoxide, N‐methyl‐2‐pyrrolidinone, and N‐cyclohexylpyrrolidinone, and can be cast into tough and smooth films. The presence of phosphonic acid pendants in the poly‐(arylene ether)s was confirmed by NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and conductivity measurements. This is the first report on the attachment of phenylphosphonic acid groups as side chains to aromatic polyethers. These poly‐(arylene ether)s had very high glass‐transition temperatures ranging from 254 to >315 °C and high molecular weights. The conductivities of the synthesized polymers were analyzed by the Cole–Cole method, and they ranged from 10?5 to 10?6 Scm?1. The synthesized polymers also exhibited good solution processability. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3218–3226, 2001  相似文献   

13.
In this study, a new series of semiflexible liquid crystalline (LC) polyesters and poly(ester‐amide)s were synthesized and characterized. Polymers based on 4‐hydroxybenzoic acid (4‐HBA), 6‐hydroxy‐2‐naphthoic acid (HNA), suberic acid (SUA), and sebacic acid (SEA) were modified with hydroquinone (HQ) and different concentrations of 4‐acetamidophenol (AP) to obtain a polyester and two poly(ester‐amide)s, respectively. All polymers were successfully prepared using conventional melt‐condensation techniques. The polymers were characterized by inherent viscosity measurements, SEC, hot‐stage polarizing microscopy, DSC, and TGA. The mechanical behavior was investigated using DMTA and tensile testing. All linear polymers have Tgs in the range of 50–80 °C and melt between 120 and 150 °C. Our polymers display good thermooxidative stabilities (5% wt loss at ~ 400 °C) and exhibit homogeneous nematic melt behavior over a wide temperature range (ΔN ~ 250 °C). The liquid crystal phase was lost when high concentrations of nonlinear monomers such as 3‐HBA (>27 mol %) and resorcinol (RC) (>23 mol %) were incorporated. The LC polyester based on 4‐HBA/HNA/HQ/SUA/SEA could easily be processed into good quality films and fibers. The films display good mechanical properties (E′ ~ 4 GPa) and high toughness, that is, ~ 15% elongation at break, at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6565–6574, 2008  相似文献   

14.
Three series of poly(pyromellitimide‐ester)s were synthesized from various N,N′‐bis(ω‐hydroxyalkyl)pyromellitimides (HAPMIs) by melt condensation with dicarboxylic acids, including terephthalic acid (TPA), 4,4′‐biphenyldicarboxylic acid (BPDA), and 4,4′‐azobenzenedicarboxylic acid (ABDA). Polymers were characterized by elemental analysis, solubility, inherent viscosity, spectra (IR, 1H‐NMR, 13C‐NMR), and X‐ray diffraction (XRD). Thermal stability and phase transition behaviour were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and hot‐stage optical polarized microscopy (HOPM). The d‐spacings, calculated from XRD data, showed an odd‐even effect with varying numbers of methylene spacers. Crystallinity of polymers decreased in the following order: azobenzene > biphenyl > phenyl polymers. Similarly, DSC‐obtained melting temperatures (Tm's) showed an odd‐even effect, and glass transition temperatures (Tg's) decreased with increasing numbers of methylene spacers. Thermal stability decreased as methylene chain length increased. Thermal stability of polymers occurred in the following order: phenyl > biphenyl > azobenzene polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1755–1761, 1999  相似文献   

15.
The new monomer, 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl-5-fluorouracil (ETPFU), was synthesized by the reaction of 5-fluorouracil (5-FU) and 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl chloride (ETPC). The homopolymer of ETPFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerizations. The synthesized ETPFU and polymers were identified by Fourier transfer infrared (FTIR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of ETPFU units in poly(ETPFU-co-AA) and poly(ETPFU-co-VAc) were 26 and 32 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range from 8,800 to 10,700. The in vitro cytotoxicities of the samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as a cancer cell line and mouse liver cells (AC2F) as a normal cell line. The in vivo antitumor activities of polymers against Balb/c mice bearing the sarcoma 180 tumor cells were greater than those of 5-FU at all doses tested. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2113–2120, 1999  相似文献   

16.
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003  相似文献   

17.
Anti-HIV nucleoside monophosphates have limited cellular uptake due to the presence of negatively-charged phosphate group. Bis-(cycloSaligenyl) derivatives containing two anti-HIV nucleosides, 3′-fluoro-3′-deoxythymidine (FLT) and 3′-azido-3′-deoxythymidine (AZT) were synthesized to increase intracellular delivery of nucleoside monophosphates. 2,5-Bis(hydroxymethylene)benzene-1,4-diol was selected as a monocyclic bidentate scaffold and synthesized by three different methods from bis(hydroxymethylene)cyclohexan-1,4-diene-1,4-diol, or diethyl 2,5-dihydroxyterephthalate. The reaction of the tetraol with diisopropylphosphoramidous dichloride in the presence of 2,6-lutidine, followed by conjugation reactions with nucleosides (i.e., FLT and AZT) and oxidation afforded symmetrical and unsymmetrical bis-(cycloSaligenyl) diphosphate triester products, AZT-AZT, FLT-FLT, and FLT-AZT conjugates, in 63-74% overall yields and modest anti-HIV activities (IC50 = 2.8-69.6 μM).  相似文献   

18.
Well‐defined linear poly(L ‐lactide)s with one or two arms (LPLLA and 2LPLLA, respectively) and star‐shaped poly(L ‐lactide)s with four or six arms (4sPLLA and 6sPLLA, respectively) were synthesized and then used for the investigation of the thermal properties, isothermal crystallization kinetics, and spherulitic growth. The maximal melting temperature, the cold‐crystallization temperature, and the degree of crystallinity of these poly(L ‐lactide) polymers decreased with an increasing number of arms in the macromolecule. Moreover, the isothermal crystallization rate constant (K) of these poly(L ‐lactide) polymers decreased in the order of KLPLLA > K2LPLLA > K4sPLLA > K6sPLLA2, which was consistent with the variation trend of the spherulitic growth rate (G). Meanwhile, both K and G of 6sPLLA slightly increased with the increasing molecular weight of the polymer. Furthermore, both LPLLA and 2LPLLA presented spherulites with good morphology and apparent Maltese cross patterns, whereas both unclear Maltese cross patterns and imperfect crystallization were observed for the star‐shaped 4sPLLA and 6sPLLA polymers. These results indicated that both the macromolecular architecture and the molecular weight of the polymer controlled K, G, and the spherulitic morphology of these poly(L ‐lactide) polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2226–2236, 2006  相似文献   

19.
Abstract  The crystal structure of 3-azido-1,2,4-triazole (AZT) has been determined. A novel coordination compound [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been synthesized by using 3-azido-1,2,4-triazole as ligand, and its structure has been characterized by using X-ray single crystal diffraction, elemental analysis, and FT-IR spectroscopy. Each cadmium (II) center is coordinated with four N atoms of four AZT molecules and two O atoms of two H2O molecules to form a slightly distorted octahedron. The optimized molecular structure and NBO charges of 3-azido-1,2,4-triazole have been obtained from the density functional theory (DFT) with the B3LYP method employing the 6-311 + G** basis sets. Thermal decomposition mechanism of [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been predicted based on DSC, TG-DTG, and FT-IR analyses. The kinetic parameters of the first exothermic process of [Cd(AZT)4(H2O)2](PA)2 · 4H2O were studied by applying the Kissinger’s and Ozawa-Doyle’s methods. Index Abstract  A novel coordination compound [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been synthesized by using 3-azido-1,2,4-triazole as ligand and its structure has been characterized by using X-ray single crystal diffraction, elemental analysis, and FT-IR spectroscopy. Each cadmium (II) center is coordinated to form a slightly distorted octahedron. Thermal decomposition mechanism of [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been predicted based on DSC, TG-DTG, and FT-IR analyses.   相似文献   

20.
Poly[3,4-bis(3-methylbutylthio)thienylenevinylene], poly[3,4-bis-(S)-(2-methylbutylthio)thienylenevinylene], poly[3′,4′-bis(3-methylbutylthio)-2,2′:5′,2″-terthienylene-5,5″-vinylene], and poly{3′,4′-bis-(S)-[2-methylbutylthio]-2,2′:5′,2″-terthienylene-5,5″-vinylene} have been synthesized. The synthesis starts from the thiophene monomers and trimers, which are formylated to give the corresponding dialdehydes. The dialdehydes are reductively polymerized using a McMurry coupling. The polymers are characterized by GPC, optical spectroscopy (FT-IR, UV-vis, circular dichroism spectroscopy and photoluminescence) and by proton and carbon NMR spectroscopy. The polymers are soluble in common organic solvents, such as THF, chloroform, toluene, benzene and 1,2-dichlorobenzene. The solvatochromism and thermochromism of the polymers in solution are investigated, while the optical activity of the polymers is used to investigate the supramolecular aggregation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4629–4639, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号