首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfaces of commercial polyurethanes (PUs) were modified by poly(ethylene oxide) (PEO) grafting and/or heparin immobilization or sulfonation to investigate the effect to antithrombogenicity. The hydrophilicity of the modified PUs surface was significantly increased. All the PEO-grafted PU surfaces displayed very little platelet adhesion and activation. The coupled heparin or sulfonate at the end of PEO exhibited anticoagulant activity to extend APTT. Lowering in vitro platelet adhesion of modified PUs led to a prolongation in the ex vivo occlusion time. In particular, the sulfonated PU-PEO surface showed the most enhanced blood compatibility due to the synergistic effects of PEO and SO3 groups.  相似文献   

2.
The current paper reports the synthesis of a highly hydrophilic, antifouling dendronized poly(3,4,5-tris(2-(2-(2-hydroxylethoxy)ethoxy)ethoxy)benzyl methacrylate) (PolyPEG) brush using surface initiated atom transfer radical polymerization (SI-ATRP) on PDMS substrates. The PDMS substrates were first oxidized in H2SO4/H2O2 solution to transform the Si-CH3 groups on their surfaces into Si-OH groups. Subsequently, a surface initiator for ATRP was immobilized onto the PDMS surface, and PolyPEG was finally grafted onto the PDMS surface via copper-mediated ATRP. Various characterization techniques, including contact angle measurements, attenuated total reflection infrared spectroscopy, and X-ray photoelectron spectroscopy, were used to ascertain the successful grafting of the PolyPEG brush onto the PDMS surface. Furthermore, the wettability and stability of the PDMS-PolyPEG surface were examined by contact angle measurements. Anti-adhesion properties were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the PDMS-PolyPEG surface exhibited durable wettability and stability, as well as significantly anti-adhesion properties, compared with native PDMS surfaces. Additionally, our results present possible uses for the PDMS-PolyPEG surface as adhesion barriers and anti-fouling or functional surfaces in biomedical applications.  相似文献   

3.
The chemistry and topography of the material surfaces have an important effect on cell behaviors. In this study, we reported the preparation of thermoresponsive micropatterned surfaces (TS) and galactosylated TS for modulating the adhesion/detachment of cells. A thickness of 1 µm of poly(N‐isopropylacrylamide) grafted layer was fabricated on the polystyrene surface with microgrooves using ultraviolet‐induced copolymerization. The thick grafted layer was in favor of the interactions between cells and materials. The following immobilization of galactose ligand with specific affinity to hepatocyte onto TS promoted the adhesion of human hepatocyte line (HL‐7702 cells). The microgrooves structure could facilitate cell adhesion and regulate the oriented growth of cells. Moreover, narrow grooves accelerated the spontaneous detachment of cells only by reducing temperature. Thus, micropatterned biofunctional designs with controlled geometrical features presented in this study have sufficient biofunctional activities in facilitating cell sheet engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Covalent grafting of biomolecules could potentially improve the biocompatibility of materials. However, these molecules have to be grafted in an active conformation to play their biological roles. The present work aims at verifying if the surface conjugation scheme of fibronectin (FN) affects the protein orientation/conformation and activity. FN was grafted onto plasma-treated fused silica using two different crosslinkers, glutaric anhydride (GA) or sulfosuccinimidyl 4-(p-maleimidophenyl)butyrate (SMPB). Fused silica was chosen as a model surface material because it presents a roughness well below the dimensions of FN, therefore allowing AFM analyses with appropriate depth resolution. Cell adhesion assays were performed to evaluate the bioactivity of grafted FN. Cell adhesion was found to be higher on GA-FN than on SMPB-FN. Since FN-radiolabeling assays allowed us to rule out a surface concentration effect (approximately 80 ng/cm2 of FN on both crosslinkers), it was hypothesized that FN adopted a more active conformation when grafted via GA. In this context, the FN conformation on both crosslinkers was investigated through AFM and contact angle analyses. Before FN grafting, GA- and SMPB-modified surfaces had a similar water contact angle, topography, and roughness. However, water contact angles of GA-FN and SMPB-FN surfaces clearly show differences in surface hydrophilicity, therefore indicating a dependence of protein organization toward the conjugation strategy. Furthermore, AFM results demonstrated that surface topography and roughness of both FN-conjugated surfaces were significantly different. Distribution analysis of FN height and diameter confirmed this observation as the protein dimensions were significantly larger on GA than SMPB. This study confirmed that the covalent immobilization scheme of biomolecules influences their conformation and, hence, their activity. Consequently, selecting the appropriate conjugation strategy is of paramount importance in retaining molecule bioactivity.  相似文献   

5.
The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application.In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan®1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed.If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV.  相似文献   

6.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   

7.
Surface coating of synthetic materials is often considered to improve biomedical devices biocompatibility. In this study, we covalently bound fibronectin (FN) onto ammonia plasma-treated PTFE via two crosslinkers, namely glutaric anhydride (GA) and sulfosuccinimidyl-4-(p-maleimidophenyl)butyrate (sulfo-SMPB). With respect to clean PTFE, cell adhesion increased markedly on both FN grafted surfaces, although it was twice higher on PTFE-GA-FN than on PTFE-SMPB-FN. ELISA experiments performed with a polyclonal antibody revealed that the amount of FN is identical on both surfaces while monoclonal antibody specific to the RGD binding site clearly demonstrated a greater availability when FN is surface grafted through GA. These results provide evidence of a variation in protein conformation correlated with the surface conjugation strategy.  相似文献   

8.
PC12 cells are a useful model to study neuronal differentiation, as they can undergo terminal differentiation, typically when treated with nerve growth factor (NGF). In this study we investigated the influence of surface energy distribution on PC12 cell differentiation, by atomic force microscopy (AFM) and immunofluorescence. Glass surfaces were modified by chemisorption: an aminosilane, n-[3-(trimethoxysilyl)propyl]ethylendiamine (C8H22N2O3Si; EDA), was grafted by polycondensation. AFM analysis of substrate topography showed the presence of aggregates suggesting that the adsorption is heterogeneous, and generates local gradients in energy of adhesion. PC12 cells cultured on these modified glass surfaces developed neurites in absence of NGF treatment. In contrast, PC12 cells did not grow neurites when cultured in the absence of NGF on a relatively smooth surface such as poly-l-lysine substrate, where amine distribution is rather homogeneous. These results suggest that surface energy distribution, through cell–substrate interactions, triggers mechanisms that will drive PC12 cells to differentiate and to initiate neuritogenesis. We were able to create a controlled physical nano-structuration with local variations in surface energy that allowed the study of these parameters on neuritogenesis.  相似文献   

9.
To improve the thromboresistance of a titanium alloy (TiAl6V4) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl6V4 surface by a plasma induced technique. Cleaned TiAl6V4 surfaces were pretreated with H2O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma. Surface compositions were verified by X-ray photoelectron spectroscopy (XPS). In vitro blood biocompatibility was evaluated by contacting the modified surfaces with ovine blood under continuous mixing. Bulk phase platelet activation was quantified by flow cytometric analysis, and surfaces were observed with scanning electron microscopy after blood contact. XPS data demonstrated successful modification of the TiAl6V4 surfaces with PMPC as evidenced by increased N and P on modified surfaces. Platelet deposition was markedly reduced on the PMPC grafted surfaces and platelet activation in blood that contacted the PMPC-grafted samples was significantly reduced relative to the unmodified TiAl6V4 and polystyrene control surfaces. Durability studies under continuously mixed water suggested no change in surface modification over a 1-month period. This modification strategy shows promise for further investigation as a means to reduce the thromboembolic risk associated with the metallic blood-contacting surfaces of VADs and other cardiovascular devices under development.  相似文献   

10.
The photograft polymerization of various vinyl monomers onto nanosized silica surfaces was investigated. It was initiated by eosin moieties introduced onto the silica surface. The preparation of the silica with eosin moieties was achieved by the reaction of eosin with benzyl chloride groups on the silica surface.These were introduced by the reaction of surface silanol groups with 4‐(chloromethyl)phenyltrimethoxysilane in the presence of t‐butyl ammonium bromide as a phase‐transfer catalyst. The photopolymerization of various vinyl monomers, such as styrene, acrylamide, acrylic acid, and acrylonitrile was successfully initiated by eosin moieties on the silica surface in the presence of ascorbic acid as a reducing agent and by oxygen. The corresponding polymers were grafted from the silica surface. The grafting efficiency (percentage of grafted polymer to total polymer formed) in the photoinitiation system was much larger than that in the radical polymerization initiated by surface radicals; these radicals were formed by the thermal decomposition of azo groups introduced onto the silica surface. It was found that the polymer‐grafted silica gave stable dispersions in good solvents of grafted polymer and the wettability of the surfaces can be easily controlled by grafting of polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 600–606, 2005  相似文献   

11.
生物相容性 ,特别是血液相容性是生物医用材料极其重要的性能[1] .提高不凝血性一直是生物材料研究与发展 (R D)的主要内容之一 ,半个多世纪来 ,不凝血材料的R D已取得了很大的发展[2 ] .但还不能满足心血管植入物 (Cardiovascularimplants)及心血管医物 (Cardiovasculardevices)对不凝血性的需要 .Ratner[3 ] 在最近一次的血液相容性问题研讨会上再次强调了不凝血材料研究的紧迫性 .会议的报告也反映了该领域的研究现状 ,并提出了今后要研究的问题等 .目前不凝血性较好的材料仅有聚…  相似文献   

12.
Surface-modified polyethylene (PE) membrane sheets were prepared by the radiation-induced graft polymerization (RIGP) of an epoxy-group-containing monomer, glycidyl methacrylate (GMA). The epoxy ring of GMA was opened by introducing diethylamine (DEA) or sodium sulfite (SS). We examined the properties of these sheets by measuring the amount of grafting polymer, surface roughness and membrane potential, and also investigated the adhesion of five Gram-negative bacteria, Escherichia coli, Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas fluorescens and Paracoccus denitrificans, onto the prepared sheet surfaces. A linear relationship between the degree of grafting (dg) and surface roughness was observed. Moreover, membrane potential was dependent on the amount of DEA or SS as the ionizable group. These results indicate that RIGP enables the control of the physicochemical properties of such a sheet surface by adjusting dg and the subsequent conversion of functional groups. A batch test on bacterial adhesion onto the sheets clarified that the DEA-containing sheet (DEA sheet) exhibited an adhesion rate constant, k, significantly greater than those of other types of sheet. Clearly, the adhesion rate constant of the DEA sheet increased with dg, indicating that electrostatic interaction is the most decisive factor for bacterial adhesion when it works as an attractive force. Furthermore, the densities of bacteria adhering onto the GMA-containing sheet (GMA sheet) and the SS-containing sheet (SS sheet) were almost the same as that onto a PE sheet, whereas that onto a DEA sheet significantly increased. Thus, the introduction of the GMA- and SS-containing graft chain did not have much influence on bacterial adhesion onto the surfaces, supporting the conclusion that the promotion of bacterial adhesion onto the GMA and SS sheets was due to an increase in surface area resulting from RIGP. Moreover, the scanning electron microscopy images of the sheet surfaces indicate that the conditions and morphologies of initial bacterial adhesion are dependent on surface properties, particularly membrane potential.  相似文献   

13.
Plasma-induced grafting of polydimethylsiloxane (PDMS) onto the surface of polyurethane (PU) film. The virgin, plasma treated, and PDMS grafted PU films were characterized by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, water drop contact angle measurements, and scanning electron microscopy (SEM). The ATR-FTIR spectrogram of the grafted film showed the new characteristic peaks of PDMS. These grafted surfaces exhibited higher hydrophobicity and homogenous morphology. In vitro cell culture study showed that modified surfaces as well as virgin film were compatible with fibroblast cells. The formation of graft polymers combines the biostability of silicone with excellent physical and mechanical properties of PU.  相似文献   

14.
We investigated physicochemical properties of two types of poly(N-isopropylacrylamide) (PIPAAm)-grafted tissue culture polystyrene (TCPS) surfaces, to elucidate the influential factors for thermally regulated cell adhesion and detachment to PIPAAm-grafted surfaces. The two types of PIPAAm-grafted surfaces were prepared by the electron beam polymerization method. Attenuated total reflection Fourier transform infrared spectroscopy revealed that amounts of the grafted polymers were 1.4 +/- 0.1 microg/cm2 for PIPAAm-1.4 and 2.9 +/- 0.1 microg/cm2 for PIPAAm-2.9. Both PIPAAm-grafted surfaces showed hydrophobic/hydrophilic property alterations in response to temperature. However, PIPAAm-1.4 surfaces were more hydrophobic (cos theta = 0.21 at 37 degrees C and cos theta = 0.35 at 20 degrees C) than PIPAAm-2.9 (cos theta = 0.42 at 37 degrees C and cos theta = 0.50 at 20 degrees C) both above and below the PIPAAm's transition temperature. Thicknesses of the grafted PIPAAm layers were estimated to be 15.5 +/- 7.2 nm for PIPAAm-1.4 and 29.5 +/- 8.4 nm for PIPAAm-2.9, by the use of UV excimer laser and atomic force microscope. Bovine carotid artery endothelial cells (ECs) adhere to the surfaces of PIPAAm-1.4 and proliferate to form confluent cell monolayers. The cell monolayers were harvested as single cell sheets by temperature decrease from 37 to 20 degrees C. On the contrary, ECs did not adhere to the surfaces of PIPAAm-2.9. This phenomenon was correlated with an adsorption of cell adhesion protein, fibronectin, onto surfaces ofPIPAAm-1.4 and -2.9. In the case of nano-ordered thin grafted surfaces, the surface chain mobility is strongly influenced by the thickness of PIPAAm grafted layers because dehydration of PIPAAm chains should be enhanced by the hydrophobic TCPS surfaces. PIPAAm graft amounts, that is, thickness of the PIPAAm grafted layers, play a crucial role in temperature-induced hydrophilic/hydrophobic property alterations and cell adhesion/detachment behavior.  相似文献   

15.
The adhesion and growth of tissue cells on polymers prepared by radiation grafting was investigated. The apparent rates of initial attachment and growth of Chang liver and C6 cells were promoted on surfaces with increased wettability and with a heterogeneous structure for grafted polyvinyl fluoride film. The degree of cell attachment and growth on surfaces having a dense microblock structure, formed by grafting of methyl methacrylate in acetone solvent, was greater than that caused by other factors, such as wettability.  相似文献   

16.
本文对两种新合成的亲水性单体,甲基丙烯酸已磺酸钠和甲基丙烯酸辛磺酸钠在聚醚氨酯膜上接枝聚合进行了研究。其反应分两步:首先,在过氧化氢存在下,将膜进行光氧化,引入过氧化氢基团;然后,在还原剂亚铁盐作用下,引发甲基丙烯酸烷基磺酸酯接枝聚合。单体浓度、亚铁盐浓度、反应温度对接枝速率均有影响。接枝膜与基膜相比,吸水率与抗凝血性能均有提高。辛酯接枝膜的抗凝血性能显得更好。用扫描电镜可观察到膜上接枝物的图象。  相似文献   

17.
As the clinical demand for blood-contacting materials increases, higher requirements are placed on their physicochemical properties, durability and hemocompatibility in vivo. In this work, a multiple functionalized material was developed through a facile modification process. Herein, polycarbonate urethane (PCU) surface was co-modified with polyethylene glycol (PEG) and bivalirudin (BVLD). PCU provides excellent physical and mechanical properties, PEG and BVLD, especially BVLD, enable the surface with outstanding anticoagulant capacity. Specifically, PCU surface was first treated with hexamethylene diisocyanate to introduce active isocyanate groups onto the surface, followed by hydroxy-PEG grafting to improve the hydrophilicity. Finally, BVLD was immobilized on the surface via Michael addition reaction to improve antithrombotic properties. Attenuated total reflection Fourier transforms infrared spectroscopy and UV spectrophotometers were used to confirm the modified surfaces. The hydrophilicity was characterized by static water contact angle measurement, the morphology of the modified surfaces was observed by scanning electron microscopy. Blood compatibility of the modified surfaces was characterized by the hemolysis rate, platelet adhesion assay and cell culture test. The results showed that the BVLD immobilized surface has excellent anticoagulant properties, good fibrin-bound thrombin inhibition, and good resistance against non-specific adhesion of proteins. Hence, the co-modification with PEG and BVLD was proved an encouraging strategy for improving hemocompatibility.  相似文献   

18.
Surface and bulk sorption of U(VI) onto granite rock with different types of surfaces were carried out and the results were compared for the different surfaces such as crushed granite, machined core granite, and core granite with fractured surface. The sorption behavior of U(VI) dependent on surface types was investigated and discussed for contacting time, pH, constituent minerals, and surface area. Results from the sorption experiments were also compared each other in order to analyze the differences in sorption behaviors of U(VI) and to correlate the surface sorption coefficient Ka and the bulk sorption coefficient Kd. The effect of contact time and pH on the sorption of U(VI) onto fractured surfaces was larger than that onto the machined fresh surfaces but smaller than that onto the crushed surfaces. As expected, it was noticed that the surface sorption coefficients of U(VI) for the natural fracture surfaces were greater than those of the machined fresh surfaces due to the higher content of secondary minerals such as calcite and chlorite which acted as stronger sorbents. It is presumed that there are many micro-fractures or micro-pores available for the uranium sorption on the granite surfaces, even on the machined fresh surfaces, and there can be an intrinsic difference between the surface and the bulk sorption due to the different types of surfaces.  相似文献   

19.
The surface grafting onto inorganic ultrafine particles, such as silica, titanium oxide, and ferrite, by the reaction of acid anhydride groups on the surfaces with functional polymers having hydroxyl and amino groups was examined. The introduction of acid anhydride groups onto inorganic ultrafine particle was achieved by the reaction of hydroxyl groups on these surfaces with 4-trimethoxysilyltetrahydrophthalic anhydride in toluene. The amount of acid anhydride groups introduced onto the surface of ultrafine silica, titanium oxide, and ferrite was determined to be 0.96, 0.47, and 0.31 mmol/g, respectively, by elemental analysis. Functional polymers having terminal hydroxyl or amino groups, such as diol-type poly(propylene glycol) (PPG), and diamine-type polydimethylsiloxane (SDA), reacted with acid anhydride groups on these ultrafine particles to give polymer-grafted ultrafine particles: PPG and SDA were considered to be grafted onto these surfaces with ester and amide bond, respectively. The percentage of grafting increased with increasing acid anhydride group content of the surface: the percentage of grafting of SDA (Mn = 3.9 × 103) onto silica, titanium oxide, and ferrite reaching 64.7, 33.7, and 24.1%, respectively. These polymer-grafted ultrafine particles gave a stable colloidal dispersion in organic solvents.  相似文献   

20.
Preparation and blood compatibility of different shape polyvinyl alcohol(PVA) membrane were investigated. Firstly, the tabular and tubular[polytetrafluoroethylene(PTFE) capillary as supporter] PVA membranes were prepared; then, methoxy polyethylene glycol(mPEG) was grafted onto the surface of the PVA membranes. The effects of the shape, structure and properties of the membrane surface on blood compatibility were studied in detail. The experiment results show that mPEG modified PVA membranes, especially mPEG modified tubular membrane, could availably repel the adhesion of the platelets. In addition, the anticoagulant mechanism of mPEG with a steric repulsion effectiveness was confirmed further via different grafting methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号