首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

2.
A series of novel soluble poly(amide-imide)s were prepared from the diimide-dicarboxylic acid, 2,2-bis[N-(4-carboxyphenyl)-phthalimidyl]hexafluoropropane, with various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.78–1.63 dL g−1. The polymers were amorphous and readily soluble in aprotic polar solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, and dimethyl sulfoxide as well as in less polar solvents such as pyridine and γ-butyrolactone, and also in tetrahydrofuran. The polymer films had tensile strength of 84–129 MPa, an elongation at break range of 6–22%, and a tensile modulus range of 2.0–2.7 GPa. The glass transition temperatures of the polymers were determined by DSC method and they were in the range of 240–282°C. These polymers were fairly stable up to a temperature around or above 400°C, and lose 10% weight in the range of 450–514°C and 440–506°C in nitrogen and air, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2629–2635, 1999  相似文献   

3.
Eleven bis(phenoxy) naphthalene-containing poly(amide-imide)s IIIa–k were synthesized by the direct polycondensation of 2,7-bis (4-aminophenoxy) naphthalene (DAPON) with various aromatic bis (trimellitimide)s IIa–k in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly (amide-imide)s IIIa–k having inherent viscosities of 0.70–1.12 dL/g were obtained in quantitative yields. The polymers containing p-phenylene or bis(phenoxy) benzene units exhibited crystalline x-ray diffraction patterns. Most of the polymers were readily soluble in various solvents such as NMP, N, N-dimethylacetamide, dimethyl sulfoxide, m-cresol, o-chlorophenol, and pyridine, and gave transparent, and flexible films cast from DMAc solutions. Cast films showed obvious yield points in the stress-strain curves and had strength at break up to 87 MPa, elongation to break up to 11%, and initial modulus up to 2.10 GPa. These poly(amide-imide)s had glass transition temperatures in the range of 255–321°C, and the 10% weight loss temperatures were recorded in the range of 529–586°C in nitrogen. The properties of poly(amideimide)s IIIa–k were compared with those of the corresponding isomeric poly (amide-imide)s III′ prepared from 2,7-bis(4-trimellitimidophenoxy) naphthalene and aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
A dicarboxylic acid ( 1 ) bearing two pre-formed imide rings, was prepared from the condensation of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.53–1.68 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide—diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these poly(amide-imide)s were in the range of 237–293°C and the 10% weight loss temperatures were above 508°C in nitrogen. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Three series of fully aromatic ionomers with naphthalene moieties and pendant sulfobenzoyl side chains were prepared via K2CO3 mediated nucleophilic aromatic substitution reactions. The first series consisted of poly(arylene ether)s prepared by polycondensations of 2,6‐difluoro‐2′‐sulfobenzophenone (DFSBP) and 2,6‐dihydroxynaphthalene or 2,7‐dihydroxynaphthalene (2,7‐DHN). In the second series, copoly(arylene ether nitrile)s with different ion‐exchange capacities (IECs) were prepared by polycondensations of DFSBP, 2,6‐difluorobenzonitrile (DFBN), and 2,7‐DHN. In the third series, bis(4‐fluorophenyl)sulfone was used instead of DFBN to prepare copoly(arylene ether sulfone)s. Thus, all the ionomers had sulfonic acid units placed in stable positions close to the electron withdrawing ketone link of the side chains. Mechanically strong proton‐exchange membranes with IECs between 1.1 and 2.3 meq g−1 were cast from dimethylsulfoxide solutions. High thermal stability was indicted by high degradation temperatures between 266 and 287 °C (1 °C min−1 under air) and high glass transition temperatures between 245 and 306 °C, depending on the IEC. The copolymer membranes reached proton conductivities of 0.3 S cm−1 under fully humidified conditions. At IECs above ∼1.6 meq g−1, the copolymer membranes reached higher proton conductivities than Nafion® in the range between −20 and 120 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
When complexed with alkaline such as potassium hydroxide, sodium hydroxide or lithium hydroxide, films (40 μm thick) of polybenzimidazole (PBI) show conductivity in the 5 × 10−5–10−1 S/cm−1 range, depending on the type of alkali, the time of immersion in the corresponding base bath and the temperature of immersion. It has been shown that PBI has a remarkable capacity to concentrate KOH, even in an alkaline bath of concentration 3 M. The highest conductivity of KOH-doped PBI (9×10−2 S cm−1) at 25°C obtained in this work is higher than the we had obtained previously as optimum values for H2SO4-doped PBI (5 × 10−2 S cm−1 at 25°C) and H3PO4-doped PBI ( 2 × 10−3 S cm−1 at 25°C). PEMFCs based on an alkali-doped PBI membrane were demonstrated, and their characteristics exhibited the same performance as those of PEMFCs based on Nafion® 117. Their development is currently under active investigation.  相似文献   

7.
Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10−13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10−13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10−13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10−13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 75–83, 1998  相似文献   

8.
The deformation of piezoelectric composite has many deadly effects on the transducers and the sonar systems, but the relative testing method never been focused. Here we developed a novel fiber-grating-sensing method for the study of temperature deformation of the piezoelectric composites for the first time. With the increase of temperature, the deformations of the piezoelectric composite in three dimensions increased, and the increasing speeds (all speeds means slop of fitted line) were 1.4 × 10−3 (length), 1.8833 × 10−4 (width) and 3.1439 × 10−5 (thickness), respectively. After adding the deform information the data for the frequency constant and dielectric constant were revised. The decreasing speed of frequency constant lowered from −2.0373 to −2.0263. The increasing speed of dielectric constant lowered from 2.6779 to 2.6580 in the range of 25 °C–75 °C, and from 1.9647 to 1.9559 in the range of 75 °C–125 °C.  相似文献   

9.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The temperature dependence of the rate constant for the reactions of HO2 with OH, H, Fe2+ and Cu2+ has been determined using pulse radiolysis technique. The following rate constants, k (dm3 mol−1 s−1) at 20°C and activation energies, Ea (kJ mol−1) have been found. The reaction with OH was studied in the temperature range 20–296°C (k=7.0×109, Ea=7.4) and the reaction with H in the temperature range 5–149°C (k=8.5×109, Ea=17.5). The reaction with Fe2+ was studied in the temperature range 16–118°C (k=7.9×105, Ea=36.8) and the reaction with Cu2+ in the temperature range 17–211°C (k=1.1×108, Ea=14.9).  相似文献   

11.
Various dicarboxylic acids with preformed imide rings were readily obtained by the condensation of ω-amino acids and aminobenzoic acids with trimellitic anhydride, and omega;-amino acids with pyromellitic dianhydride. New tetraphenylthiophene-containing poly(amide-imide)s having inherent viscosities of 0.58-1.54 dL/g were prepared by the direct polycondensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene with the imide-containing dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents. These polymers were amorphous and readily soluble in a variety of solvents such as dimethylacetamide (DMAc), dimethylformamide (DMF), and N-methyl–2-pyrrolidone (NMP), and could be easily solution cast into transparent, flexible, and tough films. Most of the poly(amide-imide)s showed clear glass transition on the heating traces of differential scanning calorimetry (DSC) in the range of 146–244°C. Almost all the poly(amide-imide)s exhibited no appreciable decomposition below 400°C, with 10% weight loss being recorded above 420°C in nitrogen. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
A new diimide-diacid, (4-(4-(2,6-diphenylpyridin-4yl)phenoxy)phenyl)-1,3-bis(trimellitimidobenzene) (PPMIB), was synthesized from the condensation reaction of a new diamine, (4-(4-(2,6-diphenylpyridin-4yl)phenoxy)phenyl)-3,5-diaminobezamide (PPDA), and trimellitic anhydride carboxylic acid (TMAA) in glacial acetic acid. The diimide-diacid (PPMIB) was characterized by FT-IR, 1H-NMR and elemental analysis. A series of novel aromatic poly(amide-imide)s (PAIs) was synthesized by using direct polycondensation of PPMIB with various diamines in NMP in the presence of triphenylposphite and pyridine as condensing agents. The resulting PAIs were amorphous, readily soluble in many polar aprotic solvents and showed inherent viscosities of 0.35–0.50 dL/g. According to thermal analysis, these polymers exhibited glass transition temperatures (Tgs) in the range of 202–280°C and temperature of 10% weight loss (T10) varied from 400 to 545°C in N2. These polymers in NMP solution exhibited strong UV-Vis absorption maxima at 320°C nm and their fluorescence emission peaks appeared around 410–565 nm.  相似文献   

13.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

14.
A dicarboxylic acid ( I ) was prepared from the condensation of 9,9-bis[4-(4-aminophenoxy) phenyl] fluorene and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.75-1.04 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 262–325°C and the 10% weight loss temperatures were above 525°C in air. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The synthesis of N,N′-bis(4′-amino-4-biphenylene) isophthalamide (BABPI) and its applicability as a new diamine for the preparation of a series of new, high Tg, perfectly alternating poly(amide-imide)s is described. BABPI was synthesized from the catalytic reduction of the corresponding dinitro compound which was prepared by the condensation of isophthaloyl chloride and 4-amino-4′-nitrobiphenyl. The modified selective reduction technique was used for the preparation of 4-amino-4′-nitrobiphenyl from 4,4′-dinitro-biphenyl. Poly(amide-imide)s were synthesized by polycondensation of diamine BABPI with various commercially available aromatic dianhydrides via a conventional two-step procedure. In the first step, poly(amic-acid)s were prepared in a polar aprotic solvent, such as N-methyl pyrrolidone (NMP) at room temperature. Depending on the dianhydride used, intrinsic viscosities of poly(amic-acid)s were found to range between 0.43–0.69 dL/g. Bulk thermal imidization technique was used to obtain fully imidized poly(amide-imide)s at the second step. The synthesized poly(amide-imide)s showed good thermal stability up to 320°C and the 10% weight loss temperatures were recorded in the range of 525–550°C as evidenced by thermogravimetric analysis (TGA). The glass transition temperatures were found to be between 225–235°C from differential scanning calorimeter (DSC) measurements. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1149–1155, 1997  相似文献   

16.
A potentiometric sensor modified with a nanocomposite of montmorillonite sheets decorated with polyaniline nanofibers (MT-PANI-NFs) as an efficient electroactive material and tricresyl phosphate (TCP) as a solvent mediator has been developed for the estimation of clomipramine HCl (CLP.HCl). The optimum potentiometric performance of the sensor was achieved by mixing of MT-PANI-NFs : TCP : graphene with a ratio of 2.69 : 30.11 : 67.20 (% wt/wt). The sensor exhibited a Nernstian slope of 59.0±0.1 mV decade−1 over the concentration range of 1.0×10−5−1.0×10−2 mol L−1 with a theoretically calculated detection limit of 5.0×10−6 mol L−1. The sensor performance was scrutinized in terms of several factors including thermal stability, pH effect, response time and selectivity. As, it displayed a high thermal stability at various temperature degrees (10–60 °C) with pH independency in the range of 3.5–8.5. Additionally, the developed sensor exhibited a very rapid performance for CLP.HCl detection with a fast response time of 4 s and reflecting a superior selectivity towards CLP.HCl over the other interfering species. SEM (scanning electron microscope) was used as a characteristic tool for the investigation of the proposed graphene sensor surface. Furthermore, the graphene sensor has been efficiently used for CLP.HCl estimation in its pharmaceutical formulations.  相似文献   

17.
1, 4-Bis(4-aminophenoxy)-2-tert-butylbenzene was synthesized and used as a monomer to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.75–1.75 dL g−1. All the polyamides showed amorphous nature and most of them were soluble in polar solvents. Polyamides derived from 4, 4'-sulfonyldibenzoic acid and 4, 4'-hexafluoroisopropylidenedibenzoic acid were even soluble in common organic solvent such as THF. All polyamide films could be obtained by casting from their DMAc or NMP solutions. The polyamide films had a tensile strength range of 35–84 MPa, an elongation range at break of 3–7%, and a tensile modulus range of 1.2–2.5 GPa. These polyamides had glass transition temperatures between 203–268°C and 10% mass loss temperatures were recorded in the range of 456–472°C in nitrogen and 453–470°C in air atmosphere.  相似文献   

18.
The kinetics of complexation of Ni(II) by pterin was studied in aqueous solutions with a stopped‐flow apparatus under conditions of pseudo‐first order in the temperature range 5–45°C, pH between 4.0 and 6.5, and ionic strength 0.4 M. The equilibrium constants, stoichiometry, and pKa of the ligand and complex were also determined using a spectrophotometric technique. The results are consistent with the formation of a 1:1 complex between the metal ion and pterin. The first‐order experimental rate constant kapp is pH independent and shows the following dependence with the ion metal concentration at 25°C: kapp/s−1 = 3.8 × 10−3 + 1.6 × 10−4 × [Ni(II)]−1. A global activation energy of 57 ± 2 kJ/mol associated with the formation of a 1:1 chelate was measured. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 231–237, 2000  相似文献   

19.
Metathesis cyclopolymerization of mono‐ or bissubstituted 1,6‐heptadiynes is undergone to generate the ionic polyacetylenes (iPAs) with branched 1,2,3‐ttriazolium pendants, which possess relatively high intrinsic ionic conductivities of 1.4 × 10−5–2.1 × 10−5 S cm−1 at 30 °C. The doping treatment with lithium bis(trifluoromethanesulfonyl)imide endows iPAs with enhanced ionic conductivities of 2.5 × 10−5–4.3 × 10−5 S cm−1. Further doping with iodine, iPAs show ionic and electronic dual conductivities of 4.5 × 10−5–7.1 × 10−4 and 1.5 × 10−6–4.5 × 10−6 S cm−1, respectively. Therefore, the doped iPAs demonstrate the potential in the area of conducting polymers and polymeric electronics.

  相似文献   


20.
New aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of diimide-diacid (I) and aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The bis(3-trimellitimidophenyl) phenyl phosphine oxide (I) was readily obtained by the condensation reaction of bis(3-aminophenyl) phenyl phosphine oxide (BAPPO) with trimellitic anhydride. The resulting poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmosphere were above 532 °C and the anaerobic char yield at 800 °C ranged from 56% to 74%. Almost all the poly(amide-imide)s showed high glass transition temperature above 233 °C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and by their casting into transparent, tough and flexible films can be easily achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号