首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a new water-soluble initiator system, 2-bromopropane/CuSO4/sodium ascorbate, was used as the initiator for emulsion polymerization. Radical emulsion polymerization of styrene was successfully carried out at 80 °C by using sodium dodecylbenzenesulfonate as the emulsifier. The 2-bromopropane/CuSO4/sodium ascorbate-initiated emulsion polymerization shows the controlled free-radical polymerization features with linear growth of molecular weight. Polystyrene with a relatively high molecular weight and a narrow molecular weight distribution can be synthesized by this method. On the other hand, stable polystyrene latex can be obtained, and the size of the polystyrene latex increased with the increase in monomer conversion.  相似文献   

2.
The preparation of poly-4-vinylpyridine (poly-4VP) by electrochemical polymerization of 4-vinylpyridine (4VP) in pyridine containing sodium tetraphenylboron (NaBPh4) is described. Information on the influence of monomer concentration, current density, polymerization rate, molecular weight, and electrochemical efficiency is presented. The polymerizations were performed under conditions of constant electrolysis current. Polymer formed in the cathodic compartment only, where a red-orange solution developed after about 15 min of electrolysis time. The optical absorption spectra of these colored solutions were studied. Cyclic voltammograms of 4VP in pyridine and NaBPh4 are also reported, and the influence of the scan rate upon peak current is described. The results indicate that the polymerization was anionic and nonterminating. The characteristics of the electrochemical polymerization of 4VP in pyridine are compared with those of the same monomer in liquid NH3. In the former case, the catholyte was homogeneous, and polymer growth occurred in the liquid phase, while in the latter growth took place in a heterogeneous environment. Kinetic consequences of these physical differences are pointed out. Suggestions for the mechanism of this electrochemical initiation are advanced.  相似文献   

3.
4.
The preparation of block copolymers consisting of poly(4-vinylpyridine) (P4VP) by atom transfer radical polymerization (ATRP) was investigated. The goal was to synthesize water-soluble block copolymers with poly(ethylene oxide) (PEO) as first block, a water-soluble polymer at any pH. First, a PEO macroinitiator was prepared for the ATRP block copolymerization of 4-vinylpyridine. In the second stage, the kinetic behaviour of this block copolymerization was investigated for two different types of PEO-macroinitiators and catalyst systems, based on CuCl or CuCl2/Cu(0), with tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as the ligand. Various combinations of initiator and catalyst led to a controlled block copolymerization with optimized results obtained for chlorinated poly(ethylene glycol) monomethyl ether as macroinitiator, together with CuCl2/Cu(0)/Me6-TREN as catalyst system. With the latter system, narrow polydispersities (1.25) could be reached for PEO-P4VP block copolymers.  相似文献   

5.
Controlled polymerization of (meth)acrylamides was achieved by ATRP using the initiating system methyl 2‐chloropropionate/CuCl/tris(2‐dimethylaminoethyl)amine. Linear increase of molecular weights with conversion and low polydispersity (Mw/Mn < 1.2) were obtained in toluene, at room temperature, when N,N‐dimethylacrylamide was used as a monomer. However, the polymerization reached limited conversion, which could be enhanced by increasing the catalyst/initiator ratio. The limited conversion is not due to the loss of the active chains, but rather to the loss of activity of the catalytic system.  相似文献   

6.
The kinetics of the pseudoliving radical polymerization of 4-vinylpyridine mediated by TEMPO is studied for the first time, and quantitative parameters characterizing the pseudoliving mechanism of the reaction, namely, the rate constant of reinitiation and the product of the equilibrium constant and the propagation-rate constant, are estimated. It is shown that the general kinetic features of the TEMPO-mediated polymerizations of 4-vinylpyridine and styrene (the pattern of kinetic curves and the zero reaction order with respect to the concentration of alkoxyamine) and the distinctive features of the polymerization of 4-vinylpyridine (an abnormally low rate and a high steady-state concentration of free TEMPO) are determined by three main factors: the rate of spontaneous initiation, the rate of self-termination of macroradicals, and the constant of equilibrium between active and dormant chains.  相似文献   

7.
《Comptes Rendus Chimie》2003,6(11-12):1375-1384
Miniemulsion polymerizations of styrene in the presence of two reversible addition–fragmentation chain-transfer (RAFT) agents were studied. The rates were significantly retarded by the presence of a RAFT agents S-(thiobenzoyl)thioglycolic acid, 1, or dithiobenzoic acid 1-phenylethyl ester, 2. Control in miniemulsion polymerization is not as good as for bulk polymerizations. The miniemulsions could also be stabilized against Ostwald ripening by a polymer terminated by a dithiobenzoic moiety. In this case, the polymerization was not controlled because of the generation of renucleated particles. To cite this article: I. Uzulina et al., C. R. Chimie 6 (2003).  相似文献   

8.
Supercritical carbon dioxide (scCO2) is an inexpensive and environmentally friendly medium for radical polymerizations. ScCO2 is suited for heterogeneous controlled/living radical polymerizations (CLRPs), since the monomer, initiator, and control reagents (nitroxide, etc.) are soluble, but the polymer formed is insoluble beyond a critical degree of polymerization (Jcrit). The precipitated polymer can continue growing in (only) the particle phase giving living polymer of controlled well‐defined microstructure. The addition of a colloidal stabilizer gives a dispersion polymerization with well‐defined colloidal particles being formed. In recent years, nitroxide‐mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT) polymerization have all been conducted as heterogeneous polymerizations in scCO2. This Highlight reviews this recent body of work, and describes the unique characteristics of scCO2 that allows composite particle formation of unique morphology to be achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3711–3728, 2009  相似文献   

9.

Controlled radical polymerization of styrene in toluene by the RITP method in the presence of I2 and radical initiators, 2,2′-azobis(isobutyronitrile) and benzoyl peroxide, was studied.

  相似文献   

10.
Bulk radical polymerization of styrene in the presence of nitronyl nitroxides (2-(4-substituted phenyl)-4,4,5,5-tetramethyl-4,5-dihydroimidazolyl-1-oxyl 3-oxide) was studied. All nitronyl nitroxides, like other nitroxyl radicals such as 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO), act as reversible radical scavengers. The efficiency of controlling the polymerization is affected by the substituent at the 4′-position. The efficiency increases with electron donating strength of 4′-substituents, at least at the beginning of the reaction. However, the thermal stability of nitronyl nitroxides decreases in the same order. Thus, TEMPO is more suitable than nitronyl nitroxides for controlled/“living” radical polymerization of styrene.  相似文献   

11.
A process for RAFT-controlled radical polymerization in emulsion [36] has been applied to the polymerizations of isoprene and of butadiene in emulsion systems, with the goal of producing latex particles containing block copolymers of acrylic acid (stabilizer and starting polymer), styrene (second polymer) and isoprene or butadiene (third polymer). The microstructure of the polymer chains was examined using dual-detection size-exclusion chromatography, and the nanostructure of the materials was investigated by differential scanning calorimetry and solid-state nuclear magnetic resonance. Reactions were always slow (although faster than the corresponding processes in solution), and exhibited limited reinitiation by isoprene when in emulsion. The materials containing isoprene exhibit a nanostructure with a phase separation into high-Tg polystyrene-rich domains and low-Tg polyisoprene-rich domains, revealed by DSC and NMR. This has the potential to lead to barrier materials with novel physical properties.  相似文献   

12.
Recent development in controlled radical polymerization has provided a tool to combine a relatively robust radical polymerization technique with structural control. This contribution focuses on stable free radical polymerization in the presence of nitroxides. The influence of 2,2,6,6‐tetramethyl‐piperidine‐N‐oxyl (TEMPO) and temperature on the copolymerization of styrene and acrylonitrile will be discussed. In the second part a new class of nitroxide stable free radicals will be presented that shows enhanced performance in styrene polymerizations.  相似文献   

13.
The radiation-initiated graft polymerization of 4-vinylpyridine to high-density polyethylene was studied over a wide range of reaction conditions of radiation intensity I, monomer concentration M1, and polymer film thickness L. The conditions included both diffusion-free and diffusion-controlled graft polymerizations. The results corroborate our previous theoretical predictions on the effect of I, M1, and L on the experimental grafting rate. The grafting rate is inverse first order in L for diffusion-controlled reaction and independent of L for diffusion-free reaction. The dependence of grafting rate on radiation intensity decreases from 1/2 to 1/4 order for diffusion-controlled reaction. Diffusion control results in a decrease in the dependence of rate on monomer concentration. The observed decrease is somewhat greater than theoretically predicted.  相似文献   

14.
We extend the application of polymer brush to the synthesis of silver nanoparticles. Polymer brushes can efficiently prevent the aggregation of the prepared nanoparticles and allow the tailored synthesis of Ag nanoparticles.  相似文献   

15.
Well-defined poly(vinyl acetate)-block-poly(4-vinylpyridine) (PVAc-b-P4VP) block copolymers were synthesized for the first time by a combination of cobalt-mediated radical polymerization (CMRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization, and were used to prepare PVAc-b-P4VP hairy polystyrene (PSt) particles. PVAc end-capped by a cobalt(II) acetylacetonate complex was first synthesized by the CMRP of vinyl acetate, after which the cobalt complex was modified into a dithiobenzoate group for the RAFT polymerization of 4-vinylpyridine. The hairy PSt particles were synthesized by the dispersion polymerization of St using the PVAc-b-P4VP as both a macro-initiator and a colloidal stabilizer under UV radiation. The average size of PSt particles synthesized with 20 wt.% of PVAc-b-P4VP (M n = 39,500 g/mol) was 136 nm (CV = 19.2%). Very small Au nanoparticles were successfully immobilized on the surface of the PSt particles.  相似文献   

16.
Poly(4-vinylpyridine) (P4VP) and block copolymer, poly(4-vinylpyridine-b-styrene) (P4VP-b-PSt) were prepared by atom transfer radical polymerization (ATRP) using 1-phenylethyl chloride as initiator, CuCl and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane (Me6[14]aneN4) as catalyst and ligand. The polymerization of 4VP was carried out in 2-propanol at 40 °C. GPC and NMR studies show that the plot of ln([4VP]0/[4VP]) against the reaction time is linear, and the molecular weight of the resulting P4VP increased linearly with the conversion. Within 3 h, the conversion can reach almost 90%. P4VP-b-PSt amphiphilic block copolymer with low polydispersity index (Mw/Mn ≈ 1.2) is also obtained by ATRP of St in DMF at 110 °C using P4VP-Cl as macroinitiator, CuCl/ Me6[14]aneN4 as catalyst.  相似文献   

17.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of a hydrolyzable monomer (tert‐butyldimethylsilyl methacrylate) with cumyl dithiobenzoate and 2‐cyanoprop‐2‐yl dithiobenzoate as chain‐transfer agents was studied in toluene solutions at 70 °C. The resulting homopolymers had low polydispersity (polydispersity index < 1.3) up to 96% monomer conversion with molecular weights at high conversions close to the theoretical prediction. The profiles of the number‐average molecular weight versus the conversion revealed controlled polymerization features with chain‐transfer constants expected between 1.0 and 10. A series of poly(tert‐butyldimethylsilyl methacrylate)s were synthesized over the molecular weight range of 1.0 × 104 to 3.0 × 104, as determined by size exclusion chromatography. As strong differences of hydrodynamic volumes in tetrahydrofuran between poly(methyl methacrylate), polystyrene standards, and poly(tert‐butyldimethylsilyl methacrylate) were observed, true molecular weights were obtained from a light scattering detector equipped in a triple‐detector size exclusion chromatograph. The Mark–Houwink–Sakurada parameters for poly(tert‐butyldimethylsilyl methacrylate) were assessed to obtain directly true molecular weight values from size exclusion chromatography with universal calibration. In addition, a RAFT agent efficiency above 94% was confirmed at high conversions by both light scattering detection and 1H NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5680–5689, 2005  相似文献   

18.
Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene ( 1 ), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with α,α′-dibromoxylene( 2 )/CuBr/2,2-bipyridine(bpy) as initiating system. A linear n versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion in the first order plot are due to physical effects, i.e., to the increase of the viscosity of the reaction medium. The resulting 1-bromo-1-phenylethyl-telechelic poly(4-acetoxystyrene) ( 3 ) is a precursor of the hydrophilic poly(4-vinylphenol) and a potential new macroinitiator.  相似文献   

19.
Graft copolymers of acetylated starch oligomer (AS) and poly(methyl methacrylate) (PMMA) were polymerized by atom transfer radical polymerization (ATRP). AS was converted to an ATRP macroinitiator by converting a part of the hydroxyl groups of AS to 2-bromoisobutyryl groups. Macroinitiators with varying degrees of substitution for the 2-bromoisobutyryl group were prepared. The polymerizations were conducted using CuBr/BiPy catalyst system, either in bulk or in 1:1 v/v THF solution. They proceeded with first-order kinetics and the molecular weights of the polymers increased linearly with conversion. Graft copolymers with different graft densities and graft lengths were prepared in a controlled manner. The hydrophobicity of these copolymers was studied by contact angle measurements.  相似文献   

20.
Manipulation of surface properties of wafer is im- portant in technologies of biotechnology and advanced microelectronics[1,2]. A number of methods have been developed to modify the surface properties[3]. Among them, polymer brush is a well recognized met…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号