首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyruvate formate-lyase activating enzyme (PFL-AE) generates the catalytically essential glycyl radical on pyruvate formate-lyase via the interaction of the catalytically active [4Fe-4S]+ cluster with S-adenosylmethionine (AdoMet). Like other members of the Fe-S/AdoMet family of enzymes, PFL-AE is thought to function via generation of an AdoMet-derived 5'-deoxyadenosyl radical intermediate; however, the mechanistic steps by which this radical is generated remain to be elucidated. While all of the members of the Fe-S/AdoMet family of enzymes appear to have a unique iron site in the [4Fe-4S] cluster, based on the presence of a conserved three-cysteine cluster binding motif, the role of this unique site has been elusive. Here we utilize 35-GHz pulsed electron nuclear double resonance (ENDOR) studies of the [4Fe-4S]+ cluster of PFL-AE in complex with isotopically labeled AdoMet (denoted [1+/AdoMet]) to show that the unique iron serves to anchor the AdoMet for catalysis. AdoMet labeled with 17O at the carboxylate shows a coupling of A = 12.2 MHz, consistent with direct coordination of the carboxylate to the unique iron of the cluster. This is supported by 13C-ENDOR with the carboxylato carbon labeled with 13C, which shows a hyperfine coupling of 0.71 MHz. AdoMet enriched with 15N at the amino position gives rise to a spectrum with A(15N) = 5.8 MHz, consistent with direct coordination of the amino group to a unique iron of the cluster. Together, the results demonstrate that the unique iron of the [4Fe-4S] cluster anchors AdoMet by forming a classical N/O chelate with the amino and carboxylato groups of the methionine fragment.  相似文献   

2.
The combination of resonance Raman, electron paramagnetic resonance and M?ssbauer spectroscopies has been used to investigate the effect of S-adenosyl-l-methionine (SAM) on the spectroscopic properties of the [4Fe-4S]2+ cluster in biotin synthase. The results indicate that SAM interacts directly at a unique iron site of the [4Fe-4S]2+ cluster in BioB and support the hypothesis of a common inner-sphere mechanism for the reductive cleavage of SAM in the radical SAM family of Fe-S enzymes.  相似文献   

3.
S K-edge X-ray absorption spectroscopy on the resting oxidized and the S-adenosyl-l-methionine (SAM) bound forms of pyruvate formate-lyase activating enzyme are reported. The data show an increase in pre-edge intensity, which is due to additional contributions from sulfide and thiolate of the Fe(4)S(4) cluster into the C-S σ* orbital. This experimentally demonstrates that there is a backbonding interaction between the Fe(4)S(4) cluster and C-S σ* orbitals of SAM in this inner sphere complex. DFT calculations that reproduce the data indicate that this backbonding is enhanced in the reduced form and that this configurational interaction between the donor and acceptor orbitals facilitates the electron transfer from the cluster to the SAM, which otherwise has a large outer sphere electron transfer barrier. The energy of the reductive cleavage of the C-S bond is sensitive to the dielectric of the protein in the immediate vicinity of the site as a high dielectric stabilizes the more charge separated reactant increasing the reaction barrier. This may provide a mechanism for generation of the 5'-deoxyadenosyl radical upon substrate binding.  相似文献   

4.
During the past two years, crystal structures of Cu- and Mo-containing carbon monoxide dehydrogenases (CODHs) and Ni- and Fe-containing CODHs have been reported. The active site of CODHs from anaerobic bacteria (cluster C) is composed of Ni, Fe, and S for which crystallographic studies of the enzymes from Carboxydothermus hydrogenoformans, Rhodospirillum rubrum, and Moorella thermoaceticarevealed structural similarities in the overall protein fold but showed substantial differences in the essential Ni coordination environment. The [Ni-4Fe-5S] cluster C in the fully catalytically competent dithionite-reduced CODH II from C. hydrogenoformans (CODHII(Ch)) at 1.6 A resolution contains a characteristic mu(2)-sulfido ligand between Ni and Fe1, resulting in a square-planar ligand arrangement with four S-ligands at the Ni ion. In contrast, the [Ni-4Fe-4S] clusters C in CO-treated CODH from R. rubrum resolved at 2.8 A and in CO-treated acetyl-CoA synthase/CODH complex from M. thermoacetica at 2.2 and 1.9 A resolution, respectively, do not contain the mu(2)-sulfido ligand between Ni and Fe1 and display dissimilar geometries at the Ni ion. The [Ni-4Fe-4S] cluster is composed of a cubane [Ni-3Fe-4S] cluster linked to a mononuclear Fe site. The described coordination geometries of the Ni ion in the [Ni-4Fe-4S] cluster of R. rubrum and M. thermoacetica deviate from the square-planar ligand geometry in the [Ni-4Fe-5S] cluster C of CODHII(Ch). In addition, the latter was converted into a [Ni-4Fe-4S] cluster under specific conditions. The objective of this study was to elucidate the relationship between the structure of cluster C in CODHII(Ch) and the functionality of the protein. We have determined the CO oxidation activity of CODHII(Ch) under different conditions of crystallization, prepared crystals of the enzyme in the presence of dithiothreitol or dithionite as reducing agents under an atmosphere of N(2) or CO, and solved the corresponding structures at 1.1 to 1.6 A resolutions. Fully active CODHII(Ch) obtained after incubation of the enzyme with dithionite under N(2) revealed the [Ni-4Fe-5S] cluster. Short treatment of the enzyme with CO in the presence of dithiothreitol resulted in a catalytically competent CODHII(Ch) with a CO-reduced [Ni-4Fe-5S] cluster, but a prolonged treatment with CO caused the loss of CO-oxidizing activity and revealed a [Ni-4Fe-4S] cluster, which did not contain a mu(2)-S. These data suggest that the [Ni-4Fe-4S] cluster of CODHII(Ch) is an inactivated decomposition product originating from the [Ni-4Fe-5S] cluster.  相似文献   

5.
Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de?novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in?vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.  相似文献   

6.
The reactivity of protein bound iron-sulfur clusters with nitric oxide (NO) is well documented, but little is known about the actual mechanism of cluster nitrosylation. Here, we report studies of members of the Wbl family of [4Fe-4S] containing proteins, which play key roles in regulating developmental processes in actinomycetes, including Streptomyces and Mycobacteria, and have been shown to be NO responsive. Streptomyces coelicolor WhiD and Mycobacterium tuberculosis WhiB1 react extremely rapidly with NO in a multiphasic reaction involving, remarkably, 8 NO molecules per [4Fe-4S] cluster. The reaction is 10(4)-fold faster than that observed with O(2) and is by far the most rapid iron-sulfur cluster nitrosylation reaction reported to date. An overall stoichiometry of [Fe(4)S(4)(Cys)(4)](2-) + 8NO → 2[Fe(I)(2)(NO)(4)(Cys)(2)](0) + S(2-) + 3S(0) has been established by determination of the sulfur products and their oxidation states. Kinetic analysis leads to a four-step mechanism that accounts for the observed NO dependence. DFT calculations suggest the possibility that the nitrosylation product is a novel cluster [Fe(I)(4)(NO)(8)(Cys)(4)](0) derived by dimerization of a pair of Roussin's red ester (RRE) complexes.  相似文献   

7.
8.
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of l-lysine and l-beta-lysine, by a radical mechanism initiated by the reversible, reductive homolytic scission of the C5'-S bond in S-adenosylmethionine (SAM) to form methionine and the 5'-deoxyadenosyl radical at the active site. LAM is a member of a superfamily of enzymes in which a [4Fe-4S]+ cluster with a unique, noncysteinyl coordinated Fe provides the electron required in the cleavage of SAM. Little is known of the mechanism by which the electron is inserted into SAM, and it is not known whether all enzymes of the family employ the same mechanism. Selenium X-ray absorption spectroscopy (XAS) in the reaction of Se-adenosyl-l-selenomethionine (SeSAM) in place of SAM shows that electron transfer occurs by an inner sphere mechanism culminating in direct ligation of selenomethionine to iron upon cleavage of SeSAM. Here, we report an electron nuclear double resonance (ENDOR) spectroscopic investigation of LAM to which has been bound 14N, 17O, 2H, or 13C labeled SAM. It is found that LAM exhibits the same motif for SAM binding to the [4Fe-4S]+,2+ clusters as does pyruvate formate lyase: chelation by the unique iron of the amino and carboxylato groups of SAM; close proximity of the methionine methyl group to the cluster. However, there appear to be significant, and possibly mechanistically important, differences in the details of the binding geometry of SAM. On the basis of the correlation of the ENDOR and XAS spectroscopic results, we postulate a mechanism by which LAM cleaves SAM to generate an intermediate where N, O, and S of the methionine product are bound to the octahedrally coordinated unique Fe of the [4Fe-4S] cluster.  相似文献   

9.
Ferredoxin:thioredoxin reductase (FTR) catalyzes the reduction of the disulfide in thioredoxin in two one-electron steps using an active site comprising a [4Fe-4S] in close proximity to a redox active disulfide. M?ssbauer spectroscopy has been used to investigate the ligation and electronic properties of the [4Fe-4S] cluster in as-prepared FTR which has the active-site disulfide intact and in the N-ethylmaleimide (NEM)-modified form which provides a stable analogue of the one-electron-reduced heterodisulfide intermediate and has one of the cysteines of the active-site disulfide alkylated with NEM. The results reveal novel site-specific cluster chemistry involving weak interaction of the active-site disulfide with a unique Fe site of the [4Fe-4S]2+ cluster in the resting enzyme and cleavage of the active-site disulfide with concomitant coordination of one of the cysteines to yield a [4Fe-4S]3+ cluster with a five-coordinate Fe site ligated by two cysteine residues in the NEM-modified enzyme. The results provide molecular-level insight into the catalytic mechanism of FTR and other Fe-S-cluster-containing disulfide reductases, and suggest a possible mechanism for the reductive cleavage of S-adenosylmethionine by the radical SAM family of Fe-S enzymes.  相似文献   

10.
The cubane [4Fe-4S] is the most common multinuclear metal center in nature for electron transfer and storage. Using electrospray, we produced a series of gaseous doubly charged cubane-type complexes, [Fe4S4L4]2- (L = -SC2H5, -SH, -Cl, -Br, -I) and the Se-analogues [Fe4Se4L4]2- (L = -SC2H5, -Cl), and probed their electronic structures with photoelectron spectroscopy and density functional calculations. The photoelectron spectral features are similar among all the seven species investigated, revealing a weak threshold feature due to the minority spins on the Fe centers and confirming the low-spin two-layer model for the [4Fe-4S](2+) core and its "inverted level scheme". The measured adiabatic detachment energies, which are sensitive to the terminal ligand substitution, provide the intrinsic oxidation potentials of the [Fe4S4L4]2- complexes. The calculations revealed a simple correlation between the electron donor property of the terminal thiolate as well as the bridging sulfide with the variation of the intrinsic redox potentials. Our data provide intrinsic electronic structure information of the [4Fe-4S] cluster and the molecular basis for understanding the protein and solvent effects on the redox properties of the [4Fe-4S] active sites.  相似文献   

11.
In conventional analyses of g approximately 5 signals given by [4Fe-4S](+) clusters with S = 3/2, the effective g values that cannot be measured in the electron paramagnetic resonance (EPR) spectrum are deduced from rhombograms calculated by assuming that the g matrix is isotropic with g(x) = g(y) = g(z) = 2.00. We have shown that when the two low-field peaks corresponding to the Kramers doublets are visible in the spectrum, a new, independent piece of information about the system can be obtained by studying the temperature dependence of the ratio of the area under these peaks. By applying this method to the g approximately 5 signals displayed by NarGHI nitrate reductase, we were able to determine all the parameters of the spin Hamiltonian of FS0 centers with S = 3/2 and to measure accurately their number. Our results indicate that simple analyses based on the assumption of an isotropic g matrix can give rise to very large errors.  相似文献   

12.
Human NFU forms a complex with NifS-like proteins and is a functionally competent reducing agent for cysteinyl persulfide bond cleavage, releasing inorganic sulfide for incorporation into the ISU-bound [2Fe-2S] cluster.  相似文献   

13.
ISU (eukaryotes) and IscU (prokaryotes) are a homologous family of proteins that appear to provide a platform for assembly of [2Fe-2S] centers prior to delivery to a target apoprotein. The intermediate [2Fe-2S] IscU-bound cluster is formed by delivery of iron and sulfur to the apo-IscU, with the latter delivered through an IscS-mediated reaction. The identity of the iron donor is not yet established. In this report we characterize iron-binding sites on IscU that appear to nucleate [2Fe-2S] cluster assembly. This iron-bound form of IscU is shown to be viable for subsequent IscS-mediated assembly of holo-IscU. Following on recent reports, we demonstrate the persulfide form of IscU to be a dead-end complex that is incapable of forming holoprotein after addition of ferrous or ferric ion. The latter observation reflects the low binding affinity of persulfido IscU for iron ion.  相似文献   

14.
Gaseous Fe(4)S(n)(-) (n = 4-6) clusters and synthetic analogue complexes, Fe(4)S(4)L(n)(-) (L = Cl, Br, I; n = 1-4), were produced by laser vaporization of a solid Fe/S target and electrospray from solution samples, respectively, and their electronic structures were probed by photoelectron spectroscopy. Low binding energy features derived from minority-spin Fe 3d electrons were clearly distinguished from S-derived bands. We showed that the electronic structure of the simplest Fe(4)S(4)(-) cubane cluster can be described by the two-layer spin-coupling model previously developed for the [4Fe] cubane analogues. The photoelectron data revealed that each extra S atom in Fe(4)S(5)(-) and Fe(4)S(6)(-) removes two minority-spin Fe 3d electrons from the [4Fe--4S] cubane core and each halogen ligand removes one Fe 3d electron from the cubane core in the Fe(4)S(4)L(n)(-) complexes, clearly revealing a behavior of sequential oxidation of the cubane over five formal oxidation states: [4Fe--4S](-) --> [4Fe--4S](0) --> [4Fe--4S](+) --> [4Fe-4S](2+) --> [4Fe-4S](3+). The current work shows the electron-storage capability of the [4Fe--4S] cubane, contributes to the understanding of its electronic structure, and further demonstrates the robustness of the cubane as a structural unit and electron-transfer center.  相似文献   

15.
Adenosine-5'-phosphosulfate reductase (APSR) is an iron-sulfur protein that catalyzes the reduction of adenosine-5'-phosphosulfate (APS) to sulfite. APSR coordinates to a [4Fe-4S] cluster via a conserved CC-X(~80)-CXXC motif, and the cluster is essential for catalysis. Despite extensive functional, structural, and spectroscopic studies, the exact role of the iron-sulfur cluster in APS reduction remains unknown. To gain an understanding into the role of the cluster, density functional theory (DFT) analysis and extended X-ray fine structure spectroscopy (EXAFS) have been performed to reveal insights into the coordination, geometry, and electrostatics of the [4Fe-4S] cluster. X-ray absorption near-edge structure (XANES) data confirms that the cluster is in the [4Fe-4S](2+) state in both native and substrate-bound APSR while EXAFS data recorded at ~0.1 ? resolution indicates that there is no significant change in the structure of the [4Fe-4S] cluster between the native and substrate-bound forms of the protein. On the other hand, DFT calculations provide an insight into the subtle differences between the geometry of the cluster in the native and APS-bound forms of APSR. A comparison between models with and without the tandem cysteine pair coordination of the cluster suggests a role for the unique coordination in facilitating a compact geometric structure and "fine-tuning" the electronic structure to prevent reduction of the cluster. Further, calculations using models in which residue Lys144 is mutated to Ala confirm the finding that Lys144 serves as a crucial link in the interactions involving the [4Fe-4S] cluster and APS.  相似文献   

16.
17.
In NiFe hydrogenases, electrons are transferred from the active site to the redox partner via a chain of three Iron-Sulfur clusters, and the surface-exposed [4Fe4S] cluster has an unusual His(Cys)3 ligation. When this Histidine (H184 in Desulfovibrio fructosovorans) is changed into a cysteine or a glycine, a distal cubane is still assembled but the oxidative activity of the mutants is only 1.5 and 3% of that of the WT, respectively. We compared the activities of the WT and engineered enzymes for H2 oxidation, H+ reduction and H/D exchange, under various conditions: (i) either with the enzyme directly adsorbed onto an electrode or using soluble redox partners, and (ii) in the presence of exogenous ligands whose binding to the exposed Fe of H184G was expected to modulate the properties of the distal cluster. Protein film voltammetry proved particularly useful to unravel the effects of the mutations on inter and intramolecular electron transfer (ET). We demonstrate that changing the coordination of the distal cluster has no effect on cluster assembly, protein stability, active-site chemistry and proton transfer; however, it slows down the first-order rates of ET to and from the cluster. All-sulfur coordination is actually detrimental to ET, and intramolecular (uphill) ET is rate determining in the glycine variant. This demonstrates that although [4Fe4S] clusters are robust chemical constructs, the direct protein ligands play an essential role in imparting their ability to transfer electrons.  相似文献   

18.
19.
20.
Summary Dicubane cluster compounds (Et4N)4[Mo2Fe7S8(SR)12] (2A) (R=Ph,a;o-tolyl,b;m-tolyl,c;p-tolyl,d) were made by reaction of (Et4N)2[Fe4(SR)10] (1) with (Et4N)2MoS4 in MeCN at room temperature. The structure,1Hn.m.r.,57Fe Mössbauer spectrum, magnetic susceptibility and cyclic voltammogram are described. (Et4N)3[Mo2Fe6S8Cl6(SR)3] (3) (R=Ph,a;m-tolyl,b) was obtained from the reaction of (2Aa) or (2Ac) with acetyl chloride in MeCN. This is the first time that compound of structural type (2) is transformed into that of structural type (3) by chemical conversion. Compound (2Aa) crystallizes in the triclinic space group P with Z=1 and unit cell dimensionsa=12.775(4),b=13.076(3), andc=20.576(4) Å; the structure was refined to R=7.7% using 4031 unique data with I>3(Io). Compound (2Ac) 2THF crystallizes in the monoclinic space group P21/n with Z=2 and unit cell dimensionsa=18.022(2),b=18.375(2) andc=22.254(3) Å; the structure was refined to R=6.4% using 5173 unique data with I>3(Io). Compound (3b) crystallizes in the hexagonal space groupP63/m with Z=2 and unit cell dimensionsa=b=16.827(3) andc=15.951(16) Å; the structure was refined to R=4.9% using 1296 unique data with I>3(Io). Its characteristics are discussed and compared with those of known compounds. The ratios of core volumes S4/M4 are within the 2.34–2.40 range for core oxidation level [MoFe3S4]3+ indicating that distortion of the cubane core is a general phenomenon. Different thiolato ligands induce significant changes of structural parameters only at the Fe(SR)6 region for compound (2A) while terminal chlorides induce changes over the whole molecule of (3b) with the latter structure more comparable to [Mo2Fe6S8(SPh)9]5– (3f) with [MoFe3S4]2+ core than to [Mo2Fe6S8(SPh)9]3– (3d). The isotropic shifts of (2A) originate mainly from -contact interaction. Both1H n.m.r. spectra and magnetic susceptibility measurements indicate practically no magnetic interaction among the three magnetic centres,i.e. a Fe(SR)6 bridge and two [MoFe3S4(SR)3] units. CV studies showed that the reduction of cubane unit having aromatic thiolates is easier than that having aliphatic thiolates as the aliphatic group is electron-donating. In addition, the very similar differences of Ep,c for first and second cubane units in compounds (2A) and in (3d) and (3e) imply that the effect of the first reduced unit [MoFe3S4]2+ upon the second unit [MoFe3S4]3+ is very similar in the two types of dicubane cluster compounds. Synergism in Mo–Fe–S cluster compounds is thus proposed to play an important role in their structural correlation with reactivities and must function in nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号