首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain the multisolitary solutions of the extended Bose-Hubbard model which describes dipolar BoseEinstein condensates in optical lattices under time-dependent magnetic fields, and indicate that the nonlinearity is due to both on-site short-range interactions and also (long-range) dipole-dipole interactions which can act between neighboring sites. The discrete breathers as nonlinear excitations are always oscillatory in time and can also be spatially localized,while the oscillatory frequencies are determined by an external field. We show that these excitations will be observable and discuss how the parameters can be tuned in future experiments.  相似文献   

2.
We obtain the multisolitary solutions of the extended Bose-Hubbard model which describes dipolar Bose- Einstein condensates in optical lattices under time-dependent magnetic fields, and indicate that the nonlinearity is due to both on-site short-range interactions and also (long-range) dipole-dipole interactions which can act between neighboring sites. The discrete breathers as nonlinear excitations are always oscillatory in time and can also be spatially localized, while the oscillatory frequencies are determined by an external field. We show that these excitations will be observable and discuss how the parameters can be tuned in future experiments.  相似文献   

3.
Nonlinear classical Hamiltonian lattices exhibit generic solutions — discrete breathers. They are time-periodic and (typically exponentially) localized in space. The lattices have discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. We will introduce the concept of these localized excitations and review their basic properties including dynamical and structural stability. We then focus on advances in the theory of discrete breathers in three directions — scattering of waves by these excitations, persistence of discrete breathers in long transient processes and thermal equilibrium, and their quantization. The second part of this review is devoted to a detailed discussion of recent experimental observations and studies of discrete breathers, including theoretical modelling of these experimental situations on the basis of the general theory of discrete breathers. In particular we will focus on their detection in Josephson junction networks, arrays of coupled nonlinear optical waveguides, Bose–Einstein condensates loaded on optical lattices, antiferromagnetic layered structures, PtCl based single crystals and driven micromechanical cantilever arrays.  相似文献   

4.
雍文梅  陈海军 《物理学报》2014,63(15):150302-150302
利用变分法研究了线性和非线性交叉光晶格中偶极玻色-爱因斯坦凝聚(BEC)体系中物质波孤立子的稳定性.选用柱对称高斯型试探波函数,得出参数的Euler-Lagrange方程和体系的有效作用势能,根据有效势能是否具有局域最小值判断体系是否具有稳定孤立子解.结果表明,由于存在接触相互作用的空间调制,在排斥和吸引偶极相互作用下,均能形成稳定的孤立子解.给出了参数空间中存在稳定解的区域和物质波波包宽度随时间的变化曲线.  相似文献   

5.
We study the appearance of discrete gap solitons in a nonlinear Schrödinger model with a periodic on-site potential that possesses a gap evacuated of plane-wave solutions in the linear limit. For finite lattices supporting an anti-phase (q=π/2) gap edge phonon as an anharmonic standing wave in the nonlinear regime, gap solitons are numerically found to emerge via pitchfork bifurcations from the gap edge. Analytically, modulational instabilities between pairs of bifurcation points on this “nonlinear gap boundary” are found in terms of critical gap widths, turning to zero in the infinite-size limit, which are associated with the birth of the localized soliton as well as discrete multisolitons in the gap. Such tunable instabilities can be of relevance in exciting soliton states in modulated arrays of nonlinear optical waveguides or Bose-Einstein condensates in periodic potentials. For lattices whose gap edge phonon only asymptotically approaches the anti-phase solution, the nonlinear gap boundary splits in a bifurcation scenario leading to the birth of the discrete gap soliton as a continuable orbit to the gap edge in the linear limit. The instability-induced dynamics of the localized soliton in the gap regime is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsically localized modes (discrete breathers) from the extended out-gap soliton reveals a phase transition of the solution.  相似文献   

6.
Breathers in discrete nonlinear ferrimagnetic spin lattices are investigated for both easy-axis and easy-plane configurations. The region in frequency space of the formation of breathers is determined and the anticontinuum limit discussed. The monochromatic and the coloured breathers are found out numerically for different parameters and different conditions of excitations.  相似文献   

7.
《Physics Reports》1998,295(5):181-264
Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurrence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices — quantum breathers.Finally we will formulate a new conceptual approach capable of predicting whether discrete breathers exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.  相似文献   

8.
《中国物理 B》2021,30(6):60307-060307
We study the stabilization properties of dipolar Bose–Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytical and numerical methods, we solve a dimensionless nonlocal nonlinear discrete Gross–Pitaevskii equation with both the short-range contact interaction and the long-range dipole–dipole interaction. It is shown that, the stability of dipolar condensate in modulated deep optical lattice can be controled by coupled effects of the contact interaction, the dipolar interaction and the external modulation. The system can be stabilized when the dipolar interaction, the contact interaction, the average strength of potential and the ratio of amplitude to frequency of the modulation satisfy a critical condition. In addition, the breather state, the diffused state and the attractive-interaction-induced-trapped state are predicted. The dipolar interaction and the external modulation of the lattice play important roles in stabilizing the condensate.  相似文献   

9.
We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schr?dinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet.  相似文献   

10.
In this paper I review our experiments on visualization of discrete breathers (intrinsic localized modes) in nonlinear lattices made of Josephson junctions. Properties of Josephson junctions and arrays made of such junctions are discussed in the Introduction. The visualization technique based on low temperature laser scanning microscopy (LSM) is described in detail. Images of discrete breathers in Josephson junction arrays of various geometries are presented. Possible further experiments that can be done using LSM technique are envisioned.  相似文献   

11.
We present a theoretical study of linear wave scattering in one-dimensional nonlinear lattices by intrinsic spatially localized dynamic excitations or discrete breathers. These states appear in various nonlinear systems and present a time-periodic localized scattering potential for plane waves. We consider the case of elastic one-channel scattering, when the frequencies of incoming and transmitted waves coincide, but the breather provides with additional spatially localized ac channels whose presence may lead to various interference patterns. The dependence of the transmission coefficient on the wave number q and the breather frequency Omega(b) is studied for different types of breathers: acoustic and optical breathers, and rotobreathers. We identify several typical scattering setups where the internal time dependence of the breather is of crucial importance for the observed transmission properties.  相似文献   

12.
The formation of unstaggered localized modes in dynamical lattices can be supported by the interplay of discreteness and nonlinearity with a finite relaxation time. In rapidly responding nonlinear media, on-site discrete solitons are stable, and their broad intersite counterparts are marginally stable, featuring a virtually vanishing real instability eigenvalue. The solitons become unstable in the case of the slowly relaxing nonlinearity. The character of the instability alters with the increase of the delay time, which leads to a change in the dynamics of unstable discrete solitons. They form robust localized breathers in rapidly relaxing media, and decay into oscillatory diffractive pattern in the lattices with a slow nonlinear response. Marginally stable solitons can freely move across the lattice.  相似文献   

13.
The study of the dynamics of 1D chains with both harmonic and nonlinear interactions, as in the Fermi–Pasta–Ulam (FPU) and related problems, has played a central role in efforts to identify the broad consequences of nonlinearity in these systems. Here we study the dynamics of highly localized excitations, or discrete breathers, which are known to be initiated by the quasistatic stretching of bonds between adjacent particles. We show via dynamical simulations that acoustic waves introduced by the harmonic term stabilize the discrete breather by suppressing the breather’s tendency to delocalize and disperse. We conclude that the harmonic term, and hence acoustic waves, are essential for the existence of localized breathers in these systems.  相似文献   

14.
We study a one-dimensional Sine–Gordon lattice of anharmonic oscillators with cubic and quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the one-dimensional Sine–Gordon lattice no matter whether the nonlinear interaction is cubic or quartic. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.  相似文献   

15.
We study a one-dimensional Sine-Gordon lattice of anharmonic oscillators with cubic and quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the one-dimensional Sine-Gordon lattice no matter whether the nonlinear interaction is cubic or quartic. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.  相似文献   

16.
We demonstrate via numerical simulation that in the strongly nonlinear limit the Beta-Fermi-Pasta-Ulam (Beta-FPU) system in thermal equilibrium behaves surprisingly like weakly nonlinear waves in properly renormalized normal variables. This arises because the collective effect of strongly nonlinear interactions effectively renormalizes linear dispersion frequency and leads to effectively weak interaction among these renormalized waves. Furthermore, we show that the dynamical scenario for thermalized Beta-FPU chains is spatially highly localized discrete breathers riding chaotically on spatially extended, renormalized waves.  相似文献   

17.
徐权  田强 《中国物理 B》2008,17(12):4614-4618
This paper studies a discrete one-dimensional monatomic Klein--Gordon chain with only quartic nearest-neighbor interactions, in which the compact-like discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. Introducing the trying method, it proves that compact-like discrete breathers exist in this nonlinear system. It also discusses the linear stability of the compact-like discrete breathers, when the coefficient (β) of quartic on-site potential and the coupling constant (K4) of quartic interactive potential satisfy the given conditions, they are linearly stable.  相似文献   

18.
Two-discrete breathers are the bound states of two localized modes that can appear in classical nonlinear lattices. I investigate the quantum signature of two-discrete breathers in the system of ultracold bosonic atoms in optical lattices, which is modeled as Bose–Hubbard model containing n bosons. When the number of bosons is small, I find numerically quantum two-breathers by making use of numerical diagonalization and perturbation theory. For the cases of a large number of bosons, I can successfully construct quantum two-breather states in the Hartree approximation.  相似文献   

19.
The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations.  相似文献   

20.
Modulational instability of travelling plane waves is often considered as the first step in the formation of intrinsically localized modes (discrete breathers) in anharmonic lattices. Here, we consider an alternative mechanism for breather formation, originating in oscillatory instabilities of spatially periodic or quasiperiodic nonlinear standing waves (SWs). These SWs are constructed for Klein-Gordon or Discrete Nonlinear Schr?dinger lattices as exact time periodic and time reversible multibreather solutions from the limit of uncoupled oscillators, and merge into harmonic SWs in the small-amplitude limit. Approaching the linear limit, all SWs with nontrivial wave vectors (0 < Q < π) become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. The dynamics resulting from these instabilities is found to be qualitatively different for wave vectors smaller than or larger than π/2, respectively. In one regime persisting breathers are found, while in the other regime the system thermalizes. Received 6 October 2001 / Received in final form 1st March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: mjn@ifm.liu.se  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号