首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary The effect of calcining temperature on the surface properties of the systems Al2O3-TiO2, SiO2-Al2O3, and SiO2-TiO2 prepared by co-hydrolysis of the corresponding metal alkoxide mixtures was studied from the crystal structure, the specific surface area, the heat of immersion in water and the surface acidity.Generally, the crystal growth of the systems accelerates with the rise of temperature of calcination. The specific surface area diminishes markedly with the rise of temperature of calcination, while the surface acidity remains almost constant. But the heat of immersion depends on the composition of the systems.
Zusammenfassung Die Systeme Al2O3-TiO2, SiO2-Al2O3 und SiO2-TiO2 wurden durch die Hydrolyse der korrespondierenden Metallalkoxyde hergestellt. Von den Systemen wurden die spezifische Oberfläche, die Kristallstruktur, die Benetzungswärme in Wasser und das Oberflächen-pH in Abhängigkeit von der Glühtemperatur gemessen.Im allgemeinen wird das Kristallwachstum mit der Erhöhung der Glühtemperatur beschleunigt und die spezifische Oberfläche vermindert. Hingegen ist der Oberflächen-pH-Wert mit der Erhöhung der Glühtemperatur fast unveränderlich. Aber die Benetzungswärme hängt von der Komposition der Systeme ab.
  相似文献   

2.
Natural phlogophite, pre-treated with acids and intercalated with alumina pillars, was used as catalytic support. Transition metals (Fe, Cu) were deposited on the surface of the modified clay materials by an ion-exchange method. The obtained samples were characterized with respect to structure (XRD), texture (BET), composition (EPMA) and chemical nature of the deposited transition metals species (UV-vis-DRS). The phlogophite based materials have been found to be active and selective catalysts of the DeNOx process. The Fe-containing samples were catalytically active at lower temperatures than the clays modified with copper. A competitive ammonia oxidation by oxygen decreased the effectiveness of the DeNOx process in the high temperature range.  相似文献   

3.
A series of SiO2-Al2O3 composite oxides with different parameters of porous structure was synthesized via sol-gel process at a systematically varied pH (pH 2, 5, 7, 9, 11, 13), and characterized by transmission electron microscope, N2 adsorption-desorption measurements, X-ray powder diffraction, Fourier transform infrared spectroscopy, temperature-programmed desorption of ammonia and IR spectra of pyridine adsorption. The catalytic performance of SiO2-Al2O3 was investigated in the catalytic polymerization of tetrahydrofuran. All the SiO2-Al2O3 oxides are characterized by similar acidity but different porous properties. In the pH range of 7 to 9, the hierarchical pore system composed of mesopores and macropores is formed. Due to an enhanced accessibility of acid sites and easier diffusion of reacting molecules, the samples containing a hierarchical pore system of the catalysts show the highest yield of polytetrahydrofuran (about 48%) and an improved number-average molecular weight (Mn).  相似文献   

4.
The nature and stability of surface species of CuCl2 supported on α-Al2O3, γ-Al2O3, and SiO2 were investigated by using X-ray diffraction techniques and reflectance spectroscopy. No specific chemical interaction of CuCl2 is observed on an inert α-Al2O3 support, as opposed to hydrated carriers as SiO2 and γ-Al2O3. On these supports the coordination sphere of Cu2+ consists of surface groups (OH? or O? at drying and activation, resp.), H2O and Cl?, with the H2O ligands decreasing in concentration in the process of impregnation, drying and calcination. γ-Al2O3 samples, calcined at 400°C, show γ-Cu2(OH)3Cl as opposed to CuAl2O4 at higher temperatures. The absence of Cu2(OH)3Cl on SiO2-supported samples is related to the acid-base characteristics of the carriers. The various supports can be arranged in the following order of stability of the complexes formed: γ-Al2O3 > SiO2 ? -Al2O3.  相似文献   

5.
Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 °C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Brønsted acid sites.  相似文献   

6.
SiO2-TiO2 binary oxides are typically used as solid supports for different applications, from catalysts to optics. Tailoring the pore diameter, pore size distribution, and surface area is of great importance for any of those applications. Tailoring the chemical properties of the porous surface, e.g. in terms of polarity or acidity, is of capital importance as well. Thus, in catalytic applications or in sensing devices, where diffusion of a solute through the matrix is required, the affinity/compatibility of the solute with the matrix porous surface will determine the proper work of the device. Moreover, when the sensor is based on the adsorption of an active organic molecule or biomolecule on the porous surface matrix, the proton concentration at the surface may also modify the behavior of the active molecule. In this work, the proton affinity of the porous surface is tailored by the preparation of number of SiO2-TiO2 binary oxides with different SiO2/TiO2 weight ratios. Proton affinity is studied through the incorporation of a pH indicator as bromocresol green.  相似文献   

7.
Bentonites, when pillared with Al2O3-oxide clusters, can generate materials with BET surface area in the 290–310 m2 g−1 range having high cracking activity for gas oil conversion. The high coke make tendency of these catalysts has been attributed to their strong Lewis type acidity.Mössbauer and X-ray photoelectron spectroscopy have shown that iron in pillared clays can be found on the clay platelets, between the clay silicate layers or in the clay octahedral layer in substitution for Al. On heating, iron migration occurs. When iron is found near the pillars it can easily catalyze secondary cracking reactions and greatly enhances the already high coke make generation observed during gas oil conversion.  相似文献   

8.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

9.
刘兴海  朱海艳  石雷  孙琪 《催化学报》2011,32(1):144-148
研究了CoO/SiO2-Al2O3催化剂上苯胺和1,6-己二醇气相催化合成1-苯基氮杂环庚烷的反应,并采用N2吸附-脱附、X射线衍射、H2程序升温还原和NH3程序升温脱附技术对催化剂进行表征.结果表明,CoO/SiO2-Al2O3催化剂表现出较高的活性和选择性.当CoO担载量为0.3mmol/g时,催化剂前体在700℃...  相似文献   

10.
Nanoscale SiO2-TiO2 composite thin films with the thickness of about 100 nm were prepared by sol-gel method at room temperature in air. The chemical states of the elements on the surface and near the surface were measured by XPS. The results showed that the Ti on/near the surface of the thin films existed not only as TiO2 but also as Ti2O3. Part of the TiO2 was changed to Ti2O3 after UV irradiation. The crystalline structure of the TiO2 in the SiO2-TiO2 thin films was anatase with the crystallite size of 14–20 nm. It was found that the thin film prepared at room temperature in air has good superhydrophilic property and has strong adherence to the substrate.  相似文献   

11.
The effect of the vanadium content on the catalytic characteristics of samples of V2O5/SiO2, prepared by molecular layering, was investigated. It was shown that in the region of relatively small vanadium contents in the catalyst its surface concentration does not affect the selectivity of the process. The obtained relation between the initial selectivity and the relative reactivity of formaldehyde and the surface density of oxide-vanadium groups in the deposited catalyst is discussed.  相似文献   

12.
《中国化学快报》2020,31(9):2287-2294
Using low-cost precipitated silica (SiO2) as the carrier, a ternary SiO2-TiO2/g-C3N4 composite photocatalyst was prepared via the sol-gel method associated with a wet-grinding process. The as-prepared composite exhibits photocatalytic hydrogen production and pollutant degradation performance under solar-like irradiation. The effect of SiO2 carrier on the properties of the heterostructure between TiO2 and g-C3N4 (CN) was systematically studied. It is found that SiO2 has important effects on promoting the interaction between TiO2 and CN. The particle size of TiO2 and CN was obviously reduced during the calcination process due to the effects of SiO2. Especially, the TiO2 particles exhibit monodispersed state with particle size below 10 nm (quantum dots), resulting in the improvement of the contact area and the interaction between TiO2 and CN, and leading to the formation of efficient TiO2/CN Z-scheme heterostructure in SiO2-TiO2/CN. Besides, the introduction of SiO2 can increase the specific surface area and light absorption of SiO2-TiO2/CN, further promoting the photocatalytic reaction. As expected, the optimum SiO2-TiO2/CN composite exhibits 12.3, 3.1 and 2.9 times higher photocatalytic hydrogen production rate than that of SiO2-TiO2, CN and TiO2/CN under solar-like irradiation, while the photocatalytic active component in SiO2-TiO2/CN is only about 60 wt%. Moreover, the rhodamine B degradation rate of SiO2-TiO2/CN is also higher than that of SiO2-TiO2, CN and TiO2/CN.  相似文献   

13.
Catalysts of Nb2O5/γ-Al2O3 were prepared by aqueous solution impregnation. The state of niobia species on surface of γ-Al2O3 is characterized by using the technology of X-ray power diffraction (XRD) and analyzed using the “incorporation model”. The acidity and the nature of acid sites of the catalysts were evaluated by means of Fourier transform infrared (FTIR) spectroscopy of adsorbed pyridine. The catalytic activity of Nb2O5/γ-Al2O3 catalysts was evaluated by a condensation reaction from isobutene and isobutyraldehyde to 2,5-dimethyl-2,4-hexadiene. The results of XRD indicate that the dispersion capacity of niobia on γ-Al2O3 is about 0.76 mmol Nb per 100m2 γ-Al2O3, which is almost identical to the theoretical value (0.75 mmol Nb per 100m2 γ-Al2O3) calculated by the “incorporation model”. The results of Py-IR and catalytic activity evaluation indicate that the acidity feature is related to the state of dispersed niobia species as well as the loading of niobia onto the surface of γ-Al2O3 support.  相似文献   

14.
Controlled gas adsorption properties of various pillared clays   总被引:1,自引:0,他引:1  
Microporous pillared clays (PILC) were prepared by the intercalation of montmorillonite with particles of titania (Ti-PILC), zirconia (Zr-PILC), alumina (Al-PILC), iron oxide (Fe-PILC) and mixed lanthania/alumina (LaAl-PILC). Nitrogen adsorption isotherms (77 K) and XRD data provided information on the porosity, surface area, micropore volume and interlayer distance of these samples. The surface area varied between 198 and 266 m2/g for Ti- and Fe-PILC, respectively. The titania pillared clay had also the highest micropore volume (0.142 cc/g) and interlayer spacing (16–20 Å), compared to the Zr-PILC, which had the smallest spacing between the layers (max, 4 Å). Despite this fact, Zr-PILC always showed a high adsorption capacity for gases such as N2, O2, Ar or CO2, due to its high adsorption field in the very small micropores.From gas adsorption experiments on these various PILCs, it became clear that their adsorption properties depend on the pillars in three ways: (i) the pillar height, (ii) the distribution of the pillars between the clay layers and (iii) the nature of the pillaring species.The incorporation of other elements in the pillars leads to specific adsorption sites in the pores. This was demonstrated by the preparation of mixed Fe/Cr and Fe/Zr pillared clays. Compared to the parent Fe-PILC, the incorporation of chromium and zirconium in the iron oxide pillars had a positive influence on the adsorption capacity. Also the modification of a PILC with cations increases both capacity and selectivity for gases. This was confirmed by the increased adsorption of N2, O2 and CO2 at 273 K on a Sr2+ exchanged Al-PILC.  相似文献   

15.
The catalytic wet oxidation of phenol by hydrogen peroxide in the presence of oxygen is catalysed, at room temperature, by copper or iron homogeneous species at pH 5 or 3.5, respectively. In such conditions phenol mild oxidation is mainly observed, the total phenol oxidation to CO2 (TOC abatement) not exceeding 20 %. In similar experimental conditions, Fe, Al or Cu, Al pillared clays (FAZA or CAZA) are much more active, the phenol or the TOC conversion being directly related to the iron or copper content. Moreover, in the presence of iron containing pillared clay (FAZA), the TOC abatement can reach 80 % at 70 °C, with only a H2O2 stoichiometric excess equal to 1.5. The low iron leaching (less than 0.2 % of the total amount of iron in the catalyst) observed after a standard experiment (4 h) shows that the FAZA catalyst is highly stable in water media and could be used several consecutive times. These properties could result in the iron species stabilization in the interlamellar space of the pillared clays both by bonding with the Al pillars (60 % of the iron species) or as oxide clusters dispersed between the clay layers.  相似文献   

16.
Aluminum was doped into amorphous silica gel to modify its surface structure. The obtained SiO2-Al2O3 support was used to prepare the CuCl/SiO2-Al2O3 catalyst by solid-state ion exchange, and the catalyst activity for liquid-phase oxidative carbonylation of methanol to dimethyl carbonate was investigated. The results showed that the prepared SiO2-Al2O3 support kept the amorphous structure of the silica gel. The BET specific surface area of the silica gel was decreased to 200 m2/g, and the surface acid sites (including Brønsted acid sites) were increased. In the CuCl/SiO2-Al2O3 catalyst, CuCl was not only dispersed on surface but also was ion exchanged with surface Brønsted acid sites of the SiO2-Al2O3 support to form Cu+ species, which resulted in a decrease in BET specific surface area to 148 m2/g. These two kinds of Cu+ species on the catalyst surface were both active centers for the oxidative carbonylation of methanol to dimethyl carbonate. When the catalyst was prepared with Si/Al molar ratio of 5 and was calcined at 500 °C, the selectivity and space-time yield of dimethyl carbonate reached 74% and 1.27 g/(g·h), respectively.  相似文献   

17.
It was found that the adsorption and catalytic properties of nanosized ZrO2 particles as the pillar constituents of ZrO2-pillared clay and bulk ZrO2 are essentially different. The interaction of NO with the surface of bulk ZrO2 resulted in the formation of three types of nitrate complexes. Only two nitrate species were formed on ZrO2-pillared clay (the monodentate species was absent). Only an acetate complex was formed in the interaction of a mixture of propylene and oxygen with the surface of bulk ZrO2, whereas an isopropoxide complex was the main propylene activation species on ZrO2-pillared clay. On the surface of ZrO2-pillared clay, isopropoxide and nitrate intermediates formed a complex structurally similar to adsorbed dinitropropane. On the surface of bulk ZrO2, acetate and monodentate nitrate complexes formed a complex structurally similar to adsorbed nitromethane. The dinitropropane complex on ZrO2-pillared clay was consumed in reactions with surface nitrates. The decomposition reaction of a dinitropropane compound with the formation of acetate complexes and ammonia predominated on the surface containing no nitrate complexes in the absence of NO + O2 from a gas phase. The found differences in reactant activation species and their thermal stabilities explained differences in the activities of bulk ZrO2 and nanosized ZrO2 particles as pillars in pillared clay in the course of the selective catalytic reduction of nitrogen oxides with propylene in an excess of oxygen.  相似文献   

18.
The surface properties of supported gallium oxide catalysts prepared by impregnation of various supports (γ-Al2O3, SiO2, TiO2, ZrO2) were investigated by adsorption microcalorimetry, using ammonia and water as probe molecules. In the case of acidic supports (γ-Al2O3, ZrO2, TiO2), the acidic character of supported gallium catalysts always decreased in comparison with gallium-free supports; on very weakly acidic SiO2, new acidic centers were created when depositing Ga2O3. The addition of gallium oxide decreased the hydrophilic properties of alumina, titania and zirconia, but increased the amount of water adsorbed on silica. The catalytic performances in the selective catalytic reduction of NO by C2H4 in excess oxygenwere in the order Ga/Al2O3>Ga/TiO2>Ga/ZrO2>>Ga/SiO2. This order is more related to the quality of the dispersion of Ga2O3 on the support than to the global acidity of the solids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Copper or iron supported on commercially available oxides, such as γ-Al2O3, TiO2 (anatase) and monoclinic tetragonal ZrO2 (mt-ZrO2) were tested as catalysts for selective catalytic oxidation of ammonia into nitrogen and water vapour (NH3-SCO) in the low temperature range. Different commercial oxides were used in this study to determine the influence of the specific surface area, acidic nature of the support and crystalline phases as well as of the type of species and aggregation state of transition metals on the catalytic performance in selective ammonia oxidation. Copper modified oxide supports were found to be more active and selective to nitrogen than catalysts impregnated with iron. Activities of both transition metal modified samples decreased in the following order: mt-ZrO2, TiO2 (anatase), γ-Al2O3. Quantitative total ammonia conversion was achieved with the Cu/ZrO2 catalytic system at 400°C. Characterisation techniques, e.g. H2-temperature programmed reduction, UV-VIS-diffuse reflectance spectroscopy, suggest that easily reducible copper oxide species are important in achieving high catalytic performances at low temperatures.  相似文献   

20.
In this work three different supports (γ-Al2O3, ZSM-5, and SAPO-34) of varying degree of acid sites and textural properties were used to evaluate the influence of support specifics in the Cu/supported nanocatalysts on NO conversion. The nanocatalysts were prepared by homogeneous deposition precipitation (HDP) method and characterized by N2 pore size distribution, TEM, H2-TPR for investigation the reducibility of the copper species and acidity measurement by NH3 adsorption. The Cu/ZSM-5 and Cu/SAPO-34 catalysts were more active for NO conversion than Cu/γ-Al2O3 catalyst. The characterization and conversion differences in the copper supported on different types of support indicated that these differences arise from the differences in surface area, pore size distribution, and acidity of the supports. The higher SCR-DeNO activity of Cu/ZSM-5 and Cu/SAPO-34 nano-catalysts can be explained by higher surface area and acidity of ZSM-5 and SAPO-34 supports. These catalysts also have larger amount of reducible Cu species compared to Cu/γ-Al2O3 which correlates with the structure of the support used. Considering these findings, the NO conversion ability of Cu/supported catalysts has been correlated with support structure and acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号