首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotationally resolved infrared absorption spectra for the 1(0)(1) band of jet cooled cobalt tricarbonyl nitrosyl have been observed and analyzed. Several longitudinal modes of a Pb-salt diode laser were utilized to measure 105 rovibrational transitions for this particular vibrational band centered near 2112 cm(-1). Spectra were optimized using both argon and helium carrier gases and these experiments eventually led to rovibrational transitions being assigned to four different K subbands, specifically the K = 0, 3, 6, and 9 subbands. An iterative least-squares analysis of the spectroscopic data yielded the following molecular parameters nu0 = 2111.7457(9) cm(-1), B0 = 0.034747(12) cm(-1), B1 = 0.034695(15) cm(-1), C1 = 0.03380(9) cm(-1), and D1K = 6.3(9) x 10(-6) cm(-1) (where 3sigma uncertainties are listed in parenthesis).  相似文献   

2.
Diode laser spectra of SF(5)Cl have been recorded in the nu(8) band region at a temperature of ca. 240 K, a pressure of 0.25 mbar and an instrumental bandwidth of ca. 0.001 cm(-1). Four regions have been studied: a first one in the P-branch (906.849-907.687 cm(-1)), a second one in the Q-branch (910.407-910.944 cm(-1)), and two other ones in the R-branch (913.957-914.556 and 917.853-918.705 cm(-1) ). The whole nu(1)/nu(8) dyad of SF(5)35Cl has been previously recorded in the group of Professor H. Burger in Wuppertal, thanks to a Fourier transform infrared spectrometer. These data have thus been combined with our diode laser ones in the aim of refining the analysis. We used an effective Hamiltonian developed up to the fourth order and a set of programs called C(4nu)TDS. One thousand three hundred and forty-six transitions for nu(1), 495 (FTIR: 351; diode laser: 144) transitions for nu(8), and 406 ground state combination differences have been assigned and fitted. A global fit has been obtained with a rms of 0.00081 cm(-1) for the nu(1) band, 0.0012 cm(-1) for the FTIR data of the nu(8) band, 0.00055 cm(-1) for the diode laser data of this same band, and 0.00064 cm(-1) for the ground state. It appears that more data (for instance, using a supersonic jet) are still necessary to obtain a completely satisfactory analysis of the nu(8) region.  相似文献   

3.
Diode laser spectra of SF(5)Cl have been recorded in the nu(8) band region at a temperature of ca. 240 K, a pressure of 0.25 mbar and an instrumental bandwidth of ca. 0.001 cm(-1). Four regions have been studied: a first one in the P-branch (906.849-907.687 cm(-1)), a second one in the Q-branch (910.407-910.944 cm(-1)), and two other ones in the R-branch (913.957-914.556 and 917.853-918.705 cm(-1) ). The whole nu(1)/nu(8) dyad of SF(5)35Cl has been previously recorded in the group of Professor H. Burger in Wuppertal, thanks to a Fourier transform infrared spectrometer. These data have thus been combined with our diode laser ones in the aim of refining the analysis. We used an effective Hamiltonian developed up to the fourth order and a set of programs called C(4nu)TDS. One thousand three hundred and forty-six transitions for nu(1), 495 (FTIR: 351; diode laser: 144) transitions for nu(8), and 406 ground state combination differences have been assigned and fitted. A global fit has been obtained with a rms of 0.00081 cm(-1) for the nu(1) band, 0.0012 cm(-1) for the FTIR data of the nu(8) band, 0.00055 cm(-1) for the diode laser data of this same band, and 0.00064 cm(-1) for the ground state. It appears that more data (for instance, using a supersonic jet) are still necessary to obtain a completely satisfactory analysis of the nu(8) region.  相似文献   

4.
The diode laser spectrum of cis-1,2-CHF=CHF has been measured and analyzed in the nu4 fundamental region near 1016 cm(-1). This vibration of symmetry species A1 corresponds to the C-F symmetric stretching motion and gives rise to a strong b-type band. The rovibrational analysis, extended to the P, Q, and R branches, led to the identification of 2800 lines with J < or = 62, Ka < or = 18, Kc < or = 62. The assigned transitions free of major resonance contributions, fitted using Watson's A-reduction Hamiltonian in the Ir representation, yielded a set of spectroscopic parameters up to the quartic coefficients for the V4 = 1 state. Several perturbation effects occur throughout the band, mainly caused by the first-order c-type Coriolis interaction with the nu5 + nu11, vibrational state. Even though no transitions to the perturbing level were observed, the band orign and the rotational constants for the perturber were determined from a dyad model which includes the Coriolis interaction term.  相似文献   

5.
We present a rigorous calculation of the contribution of water dimers to the absorption coefficient alpha(nu,T) in the millimeter and far infrared domains, over a wide range (276-310 K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C. Leforestier et al., J. Chem. Phys. 117, 8710 (2002)], and which was recently further validated by the good agreement obtained for the calculated equilibrium constant Kp(T) with experimental data [Y. Scribano et al., J. Phys. Chem. A. 110, 5411 (2006)]. Transition dipole matrix elements were computed between all rovibrational states up to an excitation energy of 750 cm(-1), and J=K=5 rotational quantum numbers. It was shown by explicit calculations that these matrix elements could be extrapolated to much higher J values (J=30). Transitions to vibrational states located higher in energy were obtained from interpolation of computed matrix elements between a set of initial states spanning the 0-750 cm(-1) range and all vibrational states up to the dissociation limit (approximately 1200 cm(-1)). We compare our calculations with available experimental measurements of the water continuum absorption in the considered range. It appears that water dimers account for an important fraction of the observed continuum absorption in the millimeter region (0-10 cm(-1)). As frequency increases, their relative contribution decreases, becoming small (approximately 3%) at the highest frequency considered nu=944 cm(-1).  相似文献   

6.
Weak vibrational bands of (16)O(3) could be detected in the 5850-7030 cm(-1) spectral region by CW-cavity ring down spectroscopy using a set of fibered DFB diode lasers. As a result of the high sensitivity (noise equivalent absorption alpha(min) approximately 3 x 10(-10) cm(-1)), bands reaching a total of 16 upper vibrational states have been previously reported in selected spectral regions. In the present report, the analysis of the whole investigated region is completed by new recordings in three spectral regions which have allowed: (i) a refined analysis of the nu(1) + 3nu(2) + 3nu(3) band from new spectra in the 5850-5900 cm(-1) region; (ii) an important extension of the assignments of the 2nu(1)+5nu(3) and 4nu(1) + 2nu(2) + nu(3) bands in the 6500-6600 cm(-1) region, previously recorded by frequency modulation diode laser spectroscopy. The rovibrational assignments of the weak 4nu(1) + 2nu(2) + nu(3) band were fully confirmed by the new observation of the 4nu(1) + 2nu(2) + nu(3)- nu(2) hot band near 5866.9 cm(-1) reaching the same upper state; (iii) the observation and modelling of three A-type bands at 6895.51, 6981.87 and 6990.07 cm(-1) corresponding to the highest excited vibrational bands of ozone detected so far at high resolution. The upper vibrational states were assigned by comparison of their energy values with calculated values obtained from the ground state potential energy surface of (16)O(3). The vibrational mixing and consequently the ambiguities in the vibrational labelling are discussed. For each band or set of interacting bands, the spectroscopic parameters were determined from a fit of the corresponding line positions in the frame of the effective Hamiltonian (EH) model. A set of selected absolute line intensities was measured and used to derive the parameters of the effective transition moment operator. The exhaustive review of the previous observations gathered with the present results is presented and discussed. It leads to a total number of 3863 energy levels belonging to 21 vibrational states and corresponding to 7315 transitions. In the considered spectral region corresponding to up to 82% of the dissociation energy, the increasing importance of the "dark" states is illustrated by the occurrence of frequent rovibrational perturbations and the observation of many weak lines still unassigned.  相似文献   

7.
By using a high-resolution single mode infrared-optical parametric oscillator laser to prepare CH(3)I in single (J,K) rotational levels of the nu(1) (symmetric C-H stretching) =1 vibrational state, we have obtained rovibrationally resolved infrared-vacuum ultraviolet-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectra of the CH(3)I(+)(X(2)E(32);nu(1)(+)=1;J(+),P(+)) band, where (J,K) and (J(+),P(+)) represent the respective rotational quantum numbers of CH(3)I and CH(3)I(+). The IR-VUV-PFI-PE spectra observed for K=0 and 1 are found to have nearly identical structures. The IR-VUV-PFI-PE spectra for (J,K)=(5,0) and (7, 0) are also consistent with the previous J-selected IR-VUV-PFI-PE measurements. The analysis of these spectra indicates that the photoionization cross section of CH(3)I depends strongly on DeltaJ(+)=J(+)-J: but not on J and K. This observation lends strong support for the major assumption adopted for the semiempirical simulation scheme, which has been used for the simulation of the origin bands observed in VUV-PFI-PE study of polyatomic molecules. Using the state-to-state photoionization cross sections determined in this IR-VUV study, we have obtained excellent simulation of the VUV-PFI-PE origin band of CH(3)I(+)(X (2)E(32)), yielding more precise IE(CH(3)I)=76 930.7+/-0.5 cm(-1) and nu(1) (+)=2937.8+/-0.2 cm(-1).  相似文献   

8.
The nu 3(sigma u) fundamental vibration of 1 sigma g+ Si2C3 has been observed using a laser vaporization-supersonic cluster beam-diode laser spectrometer. Forty rovibrational transitions were measured in the range of 1965.8 to 1970.9 cm-1 with a rotational temperature of 10-15 K. A least-squares fit of these transitions yielded the following molecular constants: nu 3(sigma u)=1968.188 31(18) cm-1, B"=0.031 575 1(60) cm-1, and B'=0.031 437 4(57) cm-1. These results are in excellent agreement with recent Fourier transform infrared (FTIR) measurements of Si2C3 trapped in a solid Ar matrix [J. Chem. Phys. 100, 181(1994)] and with ab initio calculations [J. Chem. Phys. 100, 175 (1994)] which suggest cumulenic-like bonding for Si2C3, analogous to the isovalent C5 carbon cluster.  相似文献   

9.
A vibrational-rotational spectrum of the deltanu=2 transitions of a high-temperature molecule AlF was observed between 1,490 and 1,586 cm(-1) with a diode laser spectrometer. Measurements were made on the nu=3-1, 4-2, 5-3 and 8-6 bands at a temperature of 900 degrees C. Measured spectral lines were fitted to effective band constants nu(0), B(nu) and D(nu) for each band. Present measurements were made with only one Pb-salt laser diode. Physical significance of the effective band constants is discussed.  相似文献   

10.
The rotational distributions of H2 and HD formed on a highly oriented pyrolitic graphite surface at temperatures of 15-50 K have been measured using laser spectroscopy. The population of the rovibrational levels nu=1, J=0-4 and nu=2, J=0-4 has been observed and the average rotational temperatures of the nascent H2 and HD molecules have been determined. We find that the average rotational temperature of the newly formed molecules is much higher than the surface temperature on which they have formed. We compare our results with other recent experimental data and theoretical calculations.  相似文献   

11.
The absorption spectra of the (CH3)2O...HF complex in the range of 4200-2800 cm(-1) were recorded in the gas phase at a resolutions of 0.1 cm(-1) at T = 190-340 K. The spectra obtained were used to analyze their structure and to determine the temperature dependencies of the first and second spectral moments. The band shape of the (CH3)2O...HF complex in the region of the nu1(HF) stretching mode was reconstructed nonempirically. The nu1 and nu3 stretching vibrations and four bending vibrations responsible for the formation of the band shape were considered. The equilibrium geometry and the 1D-4D potential energy surfaces were calculated at the MP2 6-311++G(2d,2p) level with the basis set superposition error taken into account. On the basis of these surfaces, a number of one- and multidimensional anharmonic vibrational problems were solved by the variational method. Solutions of auxiliary 1D and 2D vibrational problems showed the strong coupling between the modes. The energy levels, transition frequencies and intensities, and the rotational constants for the combining vibrational states necessary to reconstruct the spectrum were obtained from solutions of the 4D problem (nu1, nu3, nu5(B2), nu6(B2)) and the 2D problem (nu5(B1), nu6(B1)). The theoretical spectra reconstructed for different temperatures as a superposition of rovibrational bands associated with the fundamental, hot, sum, and difference transitions reproduce the shape and separate spectral features of the experimental spectra. The calculated value of the nu1 frequency is 3424 cm(-1). Along with the frequencies and absolute intensities, the calculation yields the vibrationally averaged values of the separation between the centers of mass of the monomers Rc.-of-m., R(O...F), and r(HF) for different states. In particular, upon excitation of the nu1 mode, Rc.-of-m. becomes shorter by 0.0861 A, and r(HF) becomes longer by 0.0474 A.  相似文献   

12.
The preparation of methyl iodide (CH(3)I) in selected rovibrational states [nu(7)=1 (C-H stretch); J] by infrared (IR) excitation prior to vacuum ultraviolet (VUV) photoionization has greatly simplified the observed pulsed field ionization-photoelectron (PFI-PE) spectra, allowing the direct determination of the rotational constants B(+)(C(+))=0.254+/-0.003 cm(-1) for CH(3)I(+)(X (2)E(3/2);nu(7) (+)) and the ionization energy (76 896.9+/-0.2 cm(-1)) for CH(3)I(+)(X (2)E(3/2);nu(7) (+)=1,J(+)=3/2)<--CH(3)I(X (1)A(1);nu(7)=1,J=0). The IR-VUV-PFI-PE and IR-VUV-photoion measurements also provide relative state-to-state (nu(7) (+)=1, J(+)<--nu(7)=1, J) cross sections for the photoionization process.  相似文献   

13.
The 4nu(CH) rovibrational manifold around 12 700 cm(-1) in the electronic ground state, X, of acetylene (C2H2) is monitored by time-resolved infrared-ultraviolet double-resonance (IR-UV DR) spectroscopy. An IR laser pulse initially prepares rotational J states, associated with the "IR-bright" (nu1 + 3nu3) or (1 0 3 0 0)0 vibrational combination level, and subsequent collision-induced state-to-state energy transfer is probed by UV laser-induced fluorescence. Anharmonic, l-resonance, and Coriolis couplings affect the J states of interest, resulting in a congested rovibrational manifold that exhibits complex intramolecular dynamics. In preceding papers in this series, we have described three complementary forms of the IR-UV DR experiment (IR-scanned, UV-scanned, and kinetic) on collision-induced rovibrational satellites, comprising both regular even-DeltaJ features and unexpected odd-DeltaJ features. This paper examines an unusual collision-induced quasi-continuous background (CIQCB) effect that is apparently ubiquitous, accompanying regular even-DeltaJ rovibrational energy transfer and accounting for much of the observed collision-induced odd-DeltaJ satellite structure; certain IR-bright (1 0 3 0 0)0 rovibrational states (e.g., J = 12) are particularly prominent in this regard. We examine the mechanism of this CIQCB phenomenon in terms of a congested IR-dark rovibrational manifold that is populated by collisional transfer from the nearly isoenergetic IR-bright (1 0 3 0 0)0 submanifold.  相似文献   

14.
Collision-induced state-to-state molecular energy transfer between rovibrational states in the 12,700 cm(-1) 4nu(CH) manifold of the electronic ground state X of acetylene (C(2)H(2)) is monitored by time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. Rotational J-states associated with the (nu(1) + 3nu(3)) or (1 0 3 0 0)(0) vibrational combination level, initially prepared by an IR pulse, are probed at approximately 299, approximately 296, or approximately 323 nm with UV laser-induced fluorescence via the Alpha electronic state. The rovibrational J-states of interest belong to a congested manifold that is affected by anharmonic, l-resonance, and Coriolis couplings, yielding complex intramolecular dynamics. Consequently, collision-induced rovibrational satellites observed by IR-UV DR comprise not only regular even-DeltaJ features but also supposedly forbidden odd-DeltaJ features. A preceding paper (J. Phys. Chem. A 2003, 107, 10759) focused on low-J-value rovibrational levels of the 4nu(CH) manifold (particularly those with J = 0 and J = 1) whereas this paper examines locally perturbed states at higher values of J (particularly J = 17 and 18, which display anomalous doublet structure in IR-absorption spectra). Three complementary forms of IR-UV DR experiments (IR-scanned, UV-scanned, and kinetic) are used to address the extent to which intramolecular perturbations influence the efficiency of J-resolved collision-induced energy transfer with both even and odd DeltaJ.  相似文献   

15.
Electronic spectra of the C3N radical have been observed for the first time in the near ultraviolet wavelength region by laser induced fluorescence (LIF) spectroscopy. Seventeen vibronic bands of the B 2Pii-X 2Sigma+ electronic transition system of C3N were identified in LIF spectra of products in a discharge of HC3N. The origin of the B 2Pii state was determined to be 27,929.985(1) cm(-1) from rovibrational analyses. It was found that observations of two types of 2Sigma vibronic levels, which have 2Sigma+ and 2Sigma+/- symmetries originated from excitations of the nu4 trans-bending mode (omega4=369.1(20) cm(-1)) with a large Renner-Teller (RT) interaction (epsilon4=-0.1549(50)), and the nu5 cis-bending mode (omega5=163.24(84) cm(-1)) with a small Renner-Teller interaction (epsilon5=-0.0503(68)), respectively. Vibronic levels, with excitations of the C-C stretching (omega3=869.7 cm(-1)) mode, were also identified. The spin-orbit interaction constant was determined to be Aso=-36.7(50) cm(-1) from the RT analysis. In dispersed fluorescence spectra from B 2Pii, vibrational structures of the low-lying electronically excited A 2Pii state were clearly observed with a strong progression due to the nu3' mode, together with those of the X 2Sigma+ state with weak intensities. The origin of A 2Pii, T0=1844(3) cm(-1), and the vibrational frequencies, omega3'=883(3) cm(-1) and omega5'=121(3) cm(-1) for A 2Pii, and omega3"=1054(3) cm(-1), omega4"=405(3) cm(-1), and omega5"=131(3) cm(-1) for X 2Sigma+, were determined. Time profiles of fluorescence from B 2Pii have short (50-200 ns) and long (>1 micros) decay components with quantum beats, indicating that there is a competition between radiative decay and the nonradiative internal conversion to vibrationally highly excited A 2Pii and X 2Sigma+.  相似文献   

16.
A new type of semi-conductor laser with composition InAsSb/InAsSbP is described. This laser was produced for the absorption spectroscopy of atmospherically important molecules in the 3100 cm(-1) region and tested using a closed-cycle He-cryostat in the temperature range 30-80 K. The optimal characteristics of the laser were found to be a heatsink temperature of 62 K and a drive current range of 50-350 mA. Under these conditions, the laser emits single-mode radiation in an exceptionally large wavenumber range of > 10 cm(-1). To test the laser, several experiments were carried out in which the rovibrational absorption spectra of CH3Cl, NH3, OCS and H2O were measured.  相似文献   

17.
A series of time-resolved IR-IR double-resonance experiments have been conducted where methane molecules are excited into a selected rovibrational level of the 2nu3(F2) vibrational substate of the tetradecad and where the time evolution of the population of the various energy levels is probed by a tunable continuous wave laser. The rotational relaxation and vibrational energy transfer processes occurring in methane upon inelastic CH4-H2 and CH4-He collisions have been investigated by this technique at room temperature and at 193 K. By probing transitions in which either the lower or the upper level is the laser-excited level, rotational depopulation rates in the 2nu3(F2) substate were measured. The rate constants for CH4-H2 collisions were found to be 17.7 +/- 2.0 and 18.9 +/- 2.0 micros(-1) Torr(-1) at 296 and 193 K, respectively, and for CH(4)-He collisions they are 12.1 +/- 1.5 and 16.0 +/- 2.0 micros(-1) Torr(-1) at the same temperatures. The vibrational relaxation was investigated by probing other stretching transitions such as 2nu3(F2) - nu3, nu3 + 2nu4 - 2nu4, and nu3 + nu4 - nu4. A kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), that has been developed to describe the various relaxation pathways allowed us to calculate the temporal evolution of populations in these levels and to simulate double-resonance signals. The different rate coefficients of the vibrational relaxation processes involved in these mixtures were determined by fitting simulated signals to the observed signals corresponding to assigned transitions. For vibration to translation energy transfer processes, hydrogen is a much more efficient collision partner than helium, nitrogen, or methane itself at 193 K as well as at room temperature.  相似文献   

18.
We have constructed a stabilized low temperature infrared absorption cell cooled by an open cycle refrigerator, which can run with liquid nitrogen from 250 to 80K or with liquid helium from 80K to a few kelvin. Several CO infrared spectra were recorded at low temperature using a tunable diode laser spectrometer. These spectra were analyzed taking into account the detailed effects of collisions on the line profile when the pressure increases. We also recorded spectra at very low pressure to accurately model the diode laser emission. Spectra of the R(2) line in the fundamental band of 13CO cooled by collisions with helium buffer gas at 10.5K and at pressures near 1 Torr have been recorded. The He-pressure broadening parameter (gamma(0) = 0.3 cm(-1) atm(-1)) has been derived from the simultaneous analysis of four spectra at different pressures.  相似文献   

19.
The adsorption of CO(2) over a set of gallium (III) oxide polymorphs with different crystallographic phases (alpha, beta, and gamma) and surface areas (12-105 m(2) g(-1)) was studied by in situ infrared spectroscopy. On the bare surface of the activated gallias (i.e., partially dehydroxylated under O(2) and D(2) (H(2)) at 723 K), several IR signals of the O-D (O-H) stretching mode were assigned to mono-, di- and tricoordinated OD (OH) groups bonded to gallium cations in tetrahedral and/or octahedral positions. After exposing the surface of the polymorphs to CO(2) at 323 K, a variety of (bi)carbonate species emerged. The more basic hydroxyl groups were able to react with CO(2), to yield two types of bicarbonate species: mono- (m-) and bidentate (b-) [nu(as)(CO(3)) = 1630 cm(-1); nu(s)(CO(3)) = 1431 or 1455 cm(-1) (for m- or b-); delta(OH) = 1225 cm(-1)]. Together with the bicarbonate groups, IR bands assigned to carboxylate [nu(as)(CO(2)) = 1750 cm(-1); nu(s)(CO(2)) = 1170 cm(-1)], bridge carbonate [nu(as)(CO(3)) = 1680 cm(-1); nu(s)(CO(3)) = 1280 cm(-1)], bidentate carbonate [nu(as)(CO(3)) = 1587 cm(-1); nu(s)(CO(3)) = 1325 cm(-1)], and polydentate carbonate [nu(as)(CO(3)) = 1460 cm(-1); nu(s)(CO(3)) = 1406 cm(-1)] species developed, up to approximately 600 Torr of CO(2). However, only the bi- and polydentate carbonate groups still remained on the surface upon outgassing the samples at 323 K. The total amount of adsorbed CO(2), measured by volumetric adsorption (323 K), was approximately 2.0 micromol m(-2) over any of the polymorphs, congruent with an integrated absorbance of (bi)carbonate species proportional to the surface area of the materials. Upon heating under flowing CO(2) (760 Torr), most of the (bi)carbonate species vanished a T > 550 K, but polydentate groups remained on the surface up to the highest temperature used (723 K). A thorough discussion of the more probable surface sites involved in the adsorption of CO(2) is made.  相似文献   

20.
Fluorinated alcohols, such as 2,2,3,3-tetrafluoropropanol (TFPO, CHF(2)CF(2)CH(2)OH) and 2,2,3,3,3-pentafluoropropanol (PFPO, CF(3)CF(2)CH(2)OH), can be potential replacements of hydrofluorocarbons with large global warming potentials, GWPs. IR absorption cross sections for TFPO and PFPO were determined between 4000 and 500 cm(-1) at 298 K. Integrated absorption cross sections (S(int), base e) in the 4000-600 cm(-1) range are (1.92 ± 0.34) × 10(-16) cm(2) molecule(-1) cm(-1) and (2.05 ± 0.50) × 10(-16) cm(2) molecule(-1) cm(-1) for TFPO and PFPO, respectively. Uncertainties are at a 95% confidence level. Ultraviolet absorption spectra were also recorded between 195 and 360 nm at 298 K. In the actinic region (λ > 290 nm), an upper limit of 10(-23) cm(2) molecule(-1) for the absorption cross sections (σ(λ)) was reported. Photolysis in the troposphere is therefore expected to be a negligible loss for these fluoropropanols. In addition, absolute rate coefficients for the reaction of OH radicals with CHF(2)CF(2)CH(2)OH (k(1)) and CF(3)CF(2)CH(2)OH (k(2)) were determined as a function of temperature (T = 263-358 K) by the pulsed laser photolysis/laser induced fluorescence (PLP-LIF) technique. At room temperature, the average values obtained were k(1) = (1.85 ± 0.07) × 10(-13) cm(3) molecule(-1) s(-1) and k(2) = (1.19 ± 0.03) × 10(-13) cm(3) molecule(-1) s(-1). The observed temperature dependence of k(1)(T) and k(2)(T) is described by the following expressions: (1.35 ± 0.23) × 10(-12) exp{-(605 ± 54)/T} and (1.36 ± 0.19) × 10(-12) exp{-(730 ± 43)/T} cm(3) molecule(-1) s(-1), respectively. Since photolysis of TFPO and PFPO in the actinic region is negligible, the tropospheric lifetime (τ) of these species can be approximated by the lifetime due to the homogeneous reaction with OH radicals. Global values of τ(OH) were estimated to be of 3 and 4 months for TFPO and PFPO, respectively. GWPs relative to CO(2) at a time horizon of 500 years were calculated to be 8 and 12 for TFPO and PFPO, respectively. Despite the higher GWP relative to CO(2), these species are not expected to significantly contribute to the greenhouse effect in the next decades since they are short-lived species and will not accumulate in the troposphere even as their emissions grow up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号