首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Conclusions The complexes RhCl(PPh3)3 and RuCl2(PPh3)3 catalyze hydrogen transfer from 2-propanol to the C N bond of benzonitrile and capronitrile. The reduction rate of the aromatic nitrile is higher than that of the aliphatic nitrile.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1894–1895, August, 1976.  相似文献   

4.
The new compounds CpV(B(3)H(8))(2), CpCr(B(3)H(8))(2), and Cp(2)Co(2)(B(6)H(14)) have been synthesized by treating the pentamethylcyclopentadienyl complexes [CpVCl(2)](3), [CpCrCl(2)](2), and [CpCoCl](2) with NaB(3)H(8). X-ray crystallography shows that CpV(B(3)H(8))(2) and CpCr(B(3)H(8))(2) have the same ligand sets but different molecular structures: the vanadium compound contains two bidentate B(3)H(8) ligands (i.e., bound to the metal center via two vicinal hydrogen atoms), whereas the chromium compound has one bidentate B(3)H(8) ligand and one B(3)H(8) ligand bound in an unprecedented fashion via two geminal hydrogen atoms. The "gem-bound" B(3)H(8) group itself has an atypical structure consisting of a BH(2)-BH(2)-BH(3) triangle with one additional hydrogen atom bridging the unique BH(2)-BH(2) edge. The B-B distances are nearly identical within experimental error at 1.790(5), 1.792(5), and 1.786(6) Angstrom. The relationship between the electronic and molecular structures of the V and Cr compounds is briefly discussed. The structure of Cp(2)Co(2)(B(6)H(14)) can be viewed in two different ways: as a dicobalt complex in which two CpCo units are each bound to four adjacent boron atoms of an S-shaped B(6)H(14) ligand, or as an eight-vertex hypho cluster compound. In the former case, the B(6)H(14) ligand is best regarded as a dianionic bi-borallyl group H(3)B(mu-H)BH(mu-H)BHBH(mu-H)BH(mu-H)BH(3) in which one hydrogen at each end of the chain is involved in an agostic interaction. From a cluster point of view, the structure of Cp(2)Co(2)(B(6)H(14)) can be generated by removing three adjacent high-connectivity vertices from the eleven-vertex closo polyhedron. The Co-B distances vary from 2.008(5) to 2.183(4) Angstrom, and the B-B distances within in the S-shaped chain range from 1.734(8) to 1.889(6) Angstrom. Finally, a new synthesis of the known molybdenum compound Cp(2)Mo(2)(B(5)H(9)) is described; its structure as established by X-ray crystallography closely resembles that of the previously described (C(5)H(4)Me) analogue.  相似文献   

5.
6.
7.
[Cp((CO)2Fe(PPh2H)]PF6 reacts with NaBH4 to give the intermediates CpFe(CO)2H and PPh2H, which are then converted into Cp(CO)(H)Fe(PPh2H). [Cp(CO)2FeL]PF6 (L = P(OMe)3, P(OEt)3 and P(OiPr)3) reacts with NaBH4 to give the product Cp(CO)(H)FeL directly without Cp(CO)2FeH and L even being formed transiently. The proposed reaction mechanism is that H attacks th phosphorus atom to give a metallaphosphorane complex, followed by coupling between a Cp(CO)2Fe fragment and H on the hypervalent phosphorus.  相似文献   

8.
9.
10.
11.
12.
Summary The use of [RhCl(CO)(PPh3)]2 as a precursor for the synthesis of complexes of the types [Rh(CO)L2(PPh3)]A (A = [ClO4] or [BPh4]; L = pyridine type ligand) and [Rh(CO)(L-L)(PPh3)]A (A = [ClO4] or [BPh4]; L-L = bidentate nitrogen donor) and the preparation of several complexes of the types [Rh(CO)L(PPh3){P(p-RC6H4)3}]BPh4 and [Rh(CO)(phen)(PPh3){P(p-RC6H4)3}]A (A = [ClO4] or [BPh4]; R = H or Me) is described.Author to whom all correspondence should be directed.  相似文献   

13.
Lu  Z.  Ding  Y.  Xu  Y.  Yao  Z.  Liu  Q.  Lang  J. 《Journal of Thermal Analysis and Calorimetry》2002,70(3):985-994
Thermal analysis on two new heterometallic sulfide clusters, [PPh4]2[WS3(CuBr)3]2 and [PPh4]2[MoS3(CuBr)3]2 (where PPh4=tetraphenyl phosphonium, =pentamethylcyclopenta- dienyl), was carried out using a simultaneous TG-DTA unit in an atmosphere of flowing nitrogen and at various heating rates. Supplemented using EDS method, their thermal behavior and properties, together with the composition of their intermediate product, were examined and discussed in connection with their distinctive molecular structure as a dianion, which provided some theoretically and practically significant information. Both clusters decomposed in a two-step mode, but without a stable new phase composed of Mo/W-Cu-S formed during their decomposition process as we expected. Based on TG-DTG data, four methods, i.e. Achar-Brindley-Sharp, Coats-Redfern, Kissinger and Flynn- Wall-Ozawa equation, were used to calculate the non-isothermal kinetic parameters and to determine the most probable mechanisms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The bonding problem in borazine (B3N3H6), boroxine (B3O3H3), and carborazine (B2N2C2H6) is successfully addressed through the consideration of the excited states of the constituent fragments, namely BH( ), NH( ), and CH( ). We propose the participation of resonant structures for all three species that help to explain the experimental findings. A discussion on the chemical pattern of the parental molecule benzene (C6H6) helps to make coherent the whole bonding analysis on the titled species.  相似文献   

15.
16.
Stoichiometric reactions of Cp2TiCl2 or CpTiCl3 with Li3N in various molar ratios result in reduction to (Cp2TiCl)2, (CpTiCl2)n and (CpTiCl)4 and provide useful synthetic routes. Further reduction produces hexanuclear nitrido titanium clusters, Cp8Ti6N and Cp8Ti6N3, characterised from mass spectral evidence. The nitrido clusters react with HCl to form (Cp2TiCl)2 and Cp2TiCl2. (Cp2TiCl2 is also obtained by reaction with Me3SiCl. Cp2Ti(CO)2 is formed by the reaction between Cp2TiCl2 and Li3 N in THF in the presence of CO.  相似文献   

17.
Zheng YQ  Lin JL  Xu W  Xie HZ  Sun J  Wang XW 《Inorganic chemistry》2008,47(22):10280-10287
Seven new glutaric acid complexes, Co(H 2O) 5L 1, Na 2[CoL 2] 2, Na 2[L(H 2L) 4/2] 3, {[Co 3(H 2O) 6L 2](HL) 2}.4H 2O 4, {[Co 3(H 2O) 6L 2](HL) 2}.10H 2O 5, {[Co 3(H 2O) 6L 2]L 2/2}.4H 2O 6, and Na 2{[Co 3(H 2O) 2]L 8/2].6H 2O 7 were obtained and characterized by single-crystal X-ray diffraction methods along with elemental analyses, IR spectroscopic and magnetic measurements (for 1 and 2). The [Co(H 2O) 5L] complex molecules in 1 are assembled into a three-dimensional supramolecular architecture based on intermolecular hydrogen bonds. Compound 2 consists of the Na (+) cations and the necklace-like glutarato doubly bridged [ C o L 4 / 2 ] 2 - infinity 1 anionic chains, and 3 is composed of the Na (+) cations and the anionic hydrogen bonded ladder-like [ L ( H 2 L ) 4 / 2 ] 2 - infinity 1 anionic chains. The trinuclear {[Co 3(H 2O) 6L 2](HL) 2} complex molecules with edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 4 and 5 are hydrogen bonded into two-dimensional (2D) networks. The edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 6 are bridged by glutarato ligands to generate one-dimensional (1D) chains, which are then assembled via interchain hydrogen bonds into 2D supramolecular networks. The corner-shared linear [Co 3O 16] trioctahedra in 7 are quaternate bridged by glutarato ligands to form 1D band-like anionic {[Co 3(H 2O) 2]L 8/2} (2+) chains, which are assembled via interchain hydrogen bonds into 2D layers, and between them are sandwiched the Na (+) cations. The magnetic behaviors of 1 and 2 obey the Curie-Weiss law with chi m = C/( T - Theta) with the Curie constant C = 3.012(8) cm (3) x mol (-1) x K and the Weiss constant Theta = -9.4(7) K for 1, as well as C = 2.40(1) cm (3) x mol (-1) x K and Theta = -2.10(5) K for 2, indicating weak antiferromagnetic interactions between the Co(II) ions.  相似文献   

18.
Two hydrates of sodium 5,7‐dihydroxy‐6,4′‐dimethoxyisoflavone‐3′‐sulfonate ([Na(H2O)J(C17H13O6SO3)*2H2O,] 1) and nickel 5,7‐dihydroxy‐6,4′‐dimethoxyisoflavone‐3′‐sulfonate ([Ni(H2O)6](C17H13O6SO3)2*4H2O, 2) were synthesized and characterized by IR, 'H NMR and X‐ray diffraction analyses. The hydrate 1 crystallizes in the mono‐clinic system, space group P2(1) with a=0.8201(9) nm, b=0.8030(8) nm, c= 1.5361(16) nm, β=102.052(12)°, V =0.9893(18) nm3, D,= 1.579 g/cm3, Z=2, μ=0.252 nm?1, F(000)=488, R=0.0353, wR=0.0873. The hydrate 2 belongs to triclinic system, space group P‐1 with a=0.7411(3) nm, b=0.8333(3) nm, c=1.7448(7) nm, α= 86.361(6)°, β=86.389(5)°, γ= 88.999(3)°, V=1.0731(7) nm3, D,=1.587 g/cm3, Z=1, μ=0.649 m?1, F(000)= 534. In the structure of 1, the sodium cation is coordinated by six oxygen atom and two adjacent ones are bridged by three oxygen atoms to form an octahedron chain. The C? H…?… hydrogen bonds exist between two isoflavone molecules in the structure of 2. Meanwhile, hydrogen bonds in two compounds, link themselves to assemble two three‐dimensional network structures, respectively.  相似文献   

19.
Solid-state decomposition of [V3O(O2CPh)6(H2O)3]Cl at 300 degrees C followed by alcoholysis of the product gives the new vanadium complexes [V6O6(PhCO2)6(CH3O)6(CH3OH)3] (1), [V6O6(PhCO2)6(C2H5O)6(C2H5OH)3] (2), [V6O6(PhCO2)6(C3H7O)6(C3H7OH)3] (3), [V6O6(PhCO2)6(C4H9O)6(C4H9OH)3] (4) and [V4O4(OCH3)6(O2CPh)2(HOCH3)2] (5). Complexes 2, 3 and 5 have been crystallographically characterised. DC magnetic susceptibility studies on complex shows antiferromagnetic coupling leading to a S = 0 spin ground state.  相似文献   

20.
Synthesis, characterization, and reactions of the novel manganese-oxo cubane complex [Mn(4)O(4)(O(2)PPh(2))(6)](ClO(4)), 1+ (ClO(4)(-)), are described. Cation 1+ is composed of the [Mn(4)O(4)](7+) core surrounded by six bidentate phosphinate ligands. The proton-coupled electron transfer (pcet) reactions of phenothiazine (pzH), the cation radical (pzH(.+)(ClO(4)(-)), and the neutral pz* radical with 1+ are reported and compared to Mn(4)O(4)(O(2)PPh(2))(6) (1). Compound 1+ (ClO(4)(-)) reacts with excess pzH via four sequential reduction steps that transfer a total of five electrons and four protons to 1+. This reaction forms the doubly dehydrated manganese cluster Mn(4)O(2)(O(2)PPh(2))(6) (2) and two water molecules derived from the corner oxygen atoms. The first pcet step forms the novel complex Mn(4)O(3)(OH)(O(2)PPh(2))(6) (1H) and 1 equiv of the pz+ cation by net hydride transfer from pzH. Spectroscopic characterization of isolated 1H is reported. Reduction of 1 by pzH or a series of para-substituted phenols also produces 1H via net H atom transfer. A lower limit to the homolytic bond dissociation energy (BDE) (1H --> 1 + H) was estimated to be >94 kcal/mol using solution phase BDEs for pzH and para-substituted phenols. The heterolytic BDE was estimated for the hydride transfer reaction 1H --> 1+ + H(-) (BDE approximately 127 kcal/mol). These comparisons reveal the O-H bond in 1H to be among the strongest of any Mn-hydroxo complex measured thus far. In three successive H atom transfer steps, 1H abstracts three hydrogen atoms from three pzH molecules to form complex 2. Complex 2 is shown to be identical to the "pinned butterfly" cluster produced by the reaction of 1 with pzH (Ruettinger, W. F.; Dismukes, G. C. Inorg. Chem. 2000, 39, 1021-1027). The Mn oxidation states in 2 are formally Mn(4)(2II,2III), and no further reduction occurs in excess pzH. By contrast, outer-sphere electron-only reductants such as cobaltacene reduce both 1+ and 1 to the all Mn(II) oxidation level and cause cluster fragmentation. The reaction of pzH(.+) with 1+ produces 1H and the pz+ cation by net hydrogen atom transfer, and terminates at 1 equiv of pzH(.+) with no further reaction at excess. By contrast, pz* does not react with 1+ at all, indicating that reduction of 1+ by electron transfer to form pz+ does not occur without a proton (pcet to 1+ is thermodynamically required). Experimental free energy changes are shown to account for these pcet reactions and the absence of electron transfer for any of the phenothiazine series. Hydrogen atom abstraction from substrates by 1 versus hydride abstraction by 1(+ )()illustrates the transition to two-electron one-proton pcet chemistry in the [Mn(4)O(4)](7+) core that is understood on the basis of free energy consideration. This transition provides a concrete example of the predicted lowest-energy pathway for the oxidation of two water molecules to H(2)O(2) as an intermediate within the photosynthetic water-oxidizing enzyme (vs sequential one-electron/proton steps). The implications for the mechanism of photosynthetic water splitting are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号