首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new water-soluble phosphine complexes of rhodium(III), [RhI(4)(mtpa)(2)]I (1), and ruthenium(II), [RuI(4)(mtpa)(2)].2H(2)O (2) and [RuI(2)(mtpa)(3)(H(2)O)]I(3).2H(2)O (3) (mtpa = 3,5-diaza-1-methyl-1-azonia-7-phosphatricyclo[3.3.1.1(3,7)]decane cation), have been prepared in the reactions of RhCl(3).3H(2)O and RuCl(3).3H(2)O in water in the presence of phosphine and potassium iodide. Properties and reactivity of the complexes have been investigated using (1)H and (31)P NMR and IR spectroscopies. The complexes have also been structurally characterized by single crystal X-ray diffraction studies. The compounds [RhI(4)(mtpa)(2)]I and [RuI(4)(mtpa)(2)].2H(2)O are zwitterionic octahedral complexes. The compounds were tested as catalysts for two-phase hydroformylation of 1-hexene and hydrogenation of cinnamaldehyde. Complex 1 is a selective catalyst for reduction of the C=C bond while complexes 2 and 3 selectively hydrogenate the C=O bond.  相似文献   

2.
Reactions of [RhH(PEt3)3] (1) or [RhH(PEt3)4] (2) with pentafluoropyridine or 2,3,5,6-tetrafluoropyridine afford the activation product [Rh(4-C5NF4)(PEt3)3] (3). Treatment of 3 with CO, 13CO or CNtBu effects the formation of trans-[Rh(4-C5NF4)(CO)(PEt3)2] (4a), trans-[Rh(4-C5NF4)(13CO)(PEt3)2] (4b) and trans-[Rh(4-C5NF4)(CNtBu)(PEt3)2] (5). The rhodium(III) compounds trans-[RhI(CH3)(4-C5NF4)(PEt3)2] (6a) and trans-[RhI(13CH3)(4-C5NF4)(PEt3)2] (6b) are accessible on reaction of 3 with CH3I or 13CH3I. In the presence of CO or 13CO these complexes convert into trans-[RhI(CH3)(4-C5NF4)(CO)(PEt3)2] (7a), trans-[RhI(13CH3)(4-C5NF4)(CO)(PEt3)2] (7b) and trans-[RhI(13CH3)(4-C5NF4)(13CO)(PEt3)2] (7c). The trans arrangement of the carbonyl and methyl ligand in 7a-7c has been confirmed by the 13C-13C coupling constant in the 13C NMR spectrum of 7c. A reaction of 4a or 4b with CH3I or 13CH3I yields the acyl compounds trans-[RhI(COCH3)(4-C5NF4)(PEt3)2] (8a) and trans-[RhI(13CO13CH3)(4-C5NF4)(PEt3)2] (8b), respectively. Complex 8a slowly reacts with more CH3I to give [PEt3Me][Rh(I)2(COCH3)(4-C5NF4)(PEt3)](9). On heating a solution of 7a, the complex trans-[RhI(CO)(PEt3)2] (10) and the C-C coupled product 4-methyltetrafluoropyridine (11) have been obtained. Complex 8a also forms 10 at elevated temperatures in the presence of CO together with the new ketone 4-acetyltetrafluoropyridine (12). The structures of the complexes 3, 4a, 5, 6a, 8a and 9 have been determined by X-ray crystallography. 19F-1H HMQC NMR solution spectra of 6a and 8a reveal a close contact of the methyl groups in the phosphine to the methyl or acyl ligand bound at rhodium.  相似文献   

3.
Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower than those of analogous platinum complexes with previously described 1,1-ethylenedithiolato ligands and in most cases compare well to those of 1,2-dithiolene complexes.  相似文献   

4.
A series of Pd(R-allyl)LCl complexes [R = H, 1-Me, 1-Ph, 1-gem-Me(2), 2-Me; L = Q-Phos, P(t-Bu)(3), P(t-Bu)(2)(p-NMe(2)C(6)H(4)), P(t-Bu)(2)Np] have been synthesized and evaluated in the Buchwald-Hartwig aminations in detail, in addition to the preliminary studies on Suzuki coupling and α-arylation reactions. Pd(crotyl)Q-PhosCl (9) was found to be a superior catalyst to the other Q-Phos-based catalysts, and the reported in situ systems, in model coupling reactions involving 4-bromoanisole substrate with either N-methylaniline or 4-tert-butylbenzeneboronic acid. Precatalyst 9 also performed better than the catalysts bearing P(t-Bu)(2)(p-NMe(2)C(6)H(4)) ligand; however, it is comparable to the new crotyl catalysts bearing P(t-Bu)(3) or P(t-Bu)(2)Np ligands. In α-arylation of a biologically important model substrate, 1-tetralone, Pd(allyl)P(t-Bu)(2)(p-NMe(2)C(6)H(4))Cl (15) was found to be the best catalyst. The reason for the relatively higher activity of the crotyl complexes in comparison to the allyl derivatives in C-N bond formation reactions was investigated using X-ray crystallography in conjunction with NMR spectroscopic studies.  相似文献   

5.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

6.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

7.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

8.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

9.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

10.
Molybdenum chalcogenobenzimidates of formula (Ph[PhE]C=N)Mo(N[t-Bu]Ar)(3) (Ar = 3,5-C(6)H(3)Me(2)) have been obtained by treatment of Mo(N[t-Bu]Ar)(3) sequentially with benzonitrile and 0.5 equiv of PhEEPh (E = S, Se, and Te). Molecular structure determinations have been carried out for the S and Se variants. The Te variant extrudes PhCN forming structurally characterized (PhTe)Mo(N[t-Bu]Ar)(3) with facility assessed via stopped-flow kinetic measurements, while the Se and S analogues exhibit increasing stability. Quantum chemical calculations and solution calorimetry have been employed as an aid to interpretation of the PhCN extrusion reaction.  相似文献   

11.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

12.
[RhCl(PR3)3] (R = Ph, Et) reacts with the potassium salt of 4-mercaptobenzoic acid to give a mixture of the monomeric and dimeric complexes, [Rh(SC6H4COOH)(PR3)3] and [{Rh(-SC6H4COOH)(PR3)2}2], respectively. With the labile PPh3 coligand, the dimer is the major product, while for the electron-richer coligand PEt3, the equilibrium is easily shifted to the monomer by the addition of excess PEt3. Phosphane dissociation and dimerization could be prevented by using the chelating coligand PPh(C2H4PPh2)2. [{Rh(-SC6H4COOH)(PPh3)2}2] (2b), [Rh(SC6H4COOH)(PEt3)3] (3a), and [Rh(SC6H4COOH){PPh(C2H4PPh2)2}] (4) were fully characterized by nuclear magnetic resonance and infrared spectroscopy, mass spectrometry, and elemental analysis. The molecular structures of 2b and 4 were determined by X-ray structure analysis. In solution, the lability of the phosphane ligands leads to the decomposition of 2b. One of the decomposition products, namely, the mixed-valent complex [{RhIRhIII(-SC6H4COO)(-SC6H4COOH)(SC6H4COOH)(PPh3)3}2] (5), was characterized by X-ray structural analysis. The dinuclear rhodium(III) complex [{Rh(-SC6H4COO)(SC6H4COOH)(PEt3)2}2] (6) was shown to be a byproduct in the synthesis of 3a, and this demonstrates the reactivity of the rhodium(I) complexes toward oxidative addition. The structurally characterized complexes 2b, 4, 5, and 6 show hydrogen bonding of the free carboxyl groups.  相似文献   

13.
New cationic, square-planar, ethene complexes [(Rbpa)RhI(C2H4)]+ [2a]--[2c]+ (Rbpa = N-alkyl-N,N-di(2-pyridylmethyl)amine; [2a]+: alkyl =R=Me; [2b]+: R = Bu; [2c]+: R = Bz) have been selectively oxygenated in acetonitrile by aqueous hydrogen peroxide to 2-rhoda(III)oxetanes with a labile acetonitrile ligand, [(Rbpa)RhIII(kappa2-C,O-CH2CH2O-)(MeCN)]+, [3a]+-[3c]+. The rate of elimination of acetaldehyde from [(Rbpa)RhIII(kappa2-C,O-CH2CH2O-)(MeCN)]+ increases in the order R = Me< R = Bu< R = Bz. Elimination of acetaldehyde from [(Bzbpa)RhIII(kappa2-C,O-CH2CH2O)(MeCN)]+ [3c]+, in the presence of ethene results in regeneration of ethene complex [(Bzbpa)RhI(C2H4)]+ [2c]+, and closes a catalytic cycle. In the presence of Z,Z-1,5-cyclooctadiene (cod) the corresponding cod complex [(Bzbpa)RhI(cod)]+ [6c]+ is formed. Further oxidation of [3c]+ by H2O2 results in the transient formylmethyl-hydroxy complex [(Bzbpa)RhIII(OH)[kappa1-C-CH2C(O)H]]+ [5c]+.  相似文献   

14.
《Mendeleev Communications》2021,31(5):620-623
The chemical oxidation of rhodium(i) complexes [Rh(L)(COD)][BF4], where L is a ferrocenyl phosphine/N-heterocyclic carbene ligand, with 2 equiv. of a triaryl-aminium salt [(4-BrC6H4)3N][BF4] in acetonitrile gave planar chiral, air-stable [Rh(L–H)(MeCN)3][BF4]2 complexes where the ferrocene (C5H4CH2ImR or C5H4CH2BImCH2Mes) ring has been C–H activated at the position 2 in good to excellent yields. An important reactivity difference between our complexes and the ubiquitous [Cp*Rh(MeCN)3]X2 complex has been observed in the Grignard-type arylation of 4-nitrobenzaldehyde.  相似文献   

15.
Salen complexes of the heavy alkaline-earth metals, calcium and strontium, were prepared by the reaction of various salen(t-Bu)H(2) ligands with the metals in ethanol. Six new calcium and strontium compounds, [Ca(salen(t-Bu))(HOEt)(2)(thf)] (1), [Ca(salen(t-Bu))(HOEt)(2)] (2), [Ca(salpen(t-Bu))(HOEt)(3)] (3), [Ca(salophen(t-Bu))(HOEt)(thf)] (4), [Sr(salen(t-Bu))(HOEt)(3)] (5), and [Sr(salophen(t-Bu))(HOEt)(thf)(2)] (6), were formed in this way with the quatridentate Schiff-base ligands N,N'-bis(3,5-di-tert-butylsalicylidene)ethylenediamine (salen(t-Bu)H(2)), N,N'-bis(3,5-di-tert-butylsalicylidene)-1,3-propanediamine (salpen(t-Bu)H(2)), and N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine (salophen(t-Bu)H(2)). Initially, ammonia solutions of the metals were combined with the salen(t-Bu)H(2) ligands, and in the reaction of strontium with salen(t-Bu)H(2), the unusual tetrametallic cluster [(OC(6)H(2)(t-Bu)(2)CHN(CH(2))(2)NH(2))Sr(mu(3)-salean(t-Bu)H(2))Sr(mu(3)-OH)](2) (7) was produced (salean(t-Bu)H(4) = N,N'-bis(3,5-di-tert-butyl-2-hydroxybenzyl)ethylenediamine). In this compound, the imine bonds of the salen(t-Bu)H(2) ligand were reduced to form the known ligands salean(t-Bu)H(4) and (HO)C(6)H(2)(t-Bu)(2)CHN(CH(2))(2)NH(2). Compounds 1, 5, 6, and 7 were structurally characterized by single-crystal X-ray diffraction. Crystal data for 1 (C(44)H(74)CaN(2)O(6)): triclinic space group P(-)1, a = 8.3730(10) A, b = 14.8010(10) A, c = 18.756(2) A, alpha = 72.551(10) degrees, beta = 81.795(10) degrees, gamma = 78.031(10) degrees, Z = 2. Crystal data for 5 (C(38)H(64)SrN(2)O(5)): monoclinic space group P2(1)/c, a = 23.634(3) A, b = 8.4660(10) A, c = 24.451(3) A, beta = 101.138(10) degrees, Z = 4. Crystal data for 6 (C(46)H(67)N(2)O(5)Sr): orthorhombic space group P2(1)2(1)2(1), a = 10.5590(2) A, b = 16.2070(3) A, c = 26.7620(6) A, Z = 4. Crystal data for 7 (C(98)H(156)N(8)O(8)Sr(4)): triclinic space group P(-)1, a = 14.667(1) A, b = 15.670(1) A, c = 18.594(2) A, alpha = 92.26(1) degrees, beta = 111.84(1) degrees, gamma = 117.12(1) degrees, Z = 4.  相似文献   

16.
Treatment of Ni(NCS)2(PMe2Ph)2 with organic isocyanides CN-R gave five-coordinate isocyanide Ni(II) complexes, Ni(CN-R)(NCS)2(PMe2Ph)2 (R = C6H3-2,6-Me2 (1), t-Bu (2)). Interestingly, the corresponding reaction of Ni(NCS)2(P(n-Pr)3)2 with 2 equiv. of CN-t-Bu gave an unusual compound, which exists as an ion pair of the trigonal bipyramidal cation [Ni(P(n-Pr)3)2(CN-t-Bu)3]2+ (3) and the dinuclear NCS-bridged anion [Ni(1,3-micro-NCS)(NCS)3]2(2-) (4). In contrast, Pd(NCS)2(P(n-Pr)3)2 underwent substitution with 2 equiv. of CN-t-Bu to give the four-coordinate mono(isocyanide) Pd(II) complex Pd(NCS)(SCN)(CN-t-Bu)(P(n-Pr)3) (5) via phosphine dissociation. Reactions of M(NCS)2L2 (M = Pd, Pt; L = PMe3, PEt3, PMePh2, P(n-Pr)3) with two equiv. of CN-R (R = t-Bu, i-Pr, C6H3-2,6-Me2) gave the corresponding bis(isocyanide) complexes [M(CN-R)2(PR3)2](SCN)2 (7-13), except for Pd(NCS)2(PEt3)2 that reacted with CN-R' (R' = i-Pr, C6H3-2,6-Me2) and produced the mono(isocyanide) Pd(II) complexes [Pd(CN-R')(SCN)(PEt3)2](SCN) (14 and 15). Finally, treatment of M(NCS)2(PMe3)2 (M = Ni, Pd, Pt) with sterically bulky isocyanide CN-C6H3-2,6-i-Pr2 gave various products, (16-18) depending on the identity of the metal.  相似文献   

17.
The bis(ethylene) Rh species TpMe2Rh(C2H4)2(1*) (TpMe2 = tris(3,5-dimethyl-1-pyrazol-1-yl)hydroborate) has been obtained from [RhCl(C2H4)2]2 and KTpMe2. Complex 1* easily decomposes in solution to give mainly the butadiene species TpMe2Rh(eta74-C4H6). In the solid state its thermal decomposition follows a different course and the allyl TpMe2RhH(syn-C3H4Me) is cleanly obtained as a mixture of exo and endo isomers. The complexes Tp'Rh(C2H4)2 (Tp' = Tp, TpMe2) afford the monosubstituted species Tp'Rh(C2H4)(PR3) upon reaction with PR3 but react differently with L = CO or CNR: the Tp compound gives dinuclear [TpRh]2(mu-L)3 complexes, while, in the case of 1*, TpMe2Rh(C2H4)(L) species are obtained. The ethylene ligand of complexes TpMe2Rh(C2H4)(PR3) is labile, and several peroxo compounds of composition TpMe2Rh(O2)(PR3) have been isolated by their reaction with O2. All the mononuclear Rh(I) complexes are formulated as 18e- trigonal bipyramidal species on the basis of IR and NMR spectroscopic studies. A series of dihydride complexes of Rh(III) of formulation Tp'RhH2(PR3) have been prepared by the hydrogenation of the corresponding ethylene derivatives. Complexes [TpRh]2(mu-CNCy)3, TpMe2Rh(C2H4)(PEt3), and TpMe2Rh(O2)(PEt3) have been further characterized by X-ray diffraction studies.  相似文献   

18.
Reduction of trans-[OsL2(O)2] (1) (L-=[N(i-Pr2PS)2]-) with hydrazine hydrate afforded a dinitrogen complex 2, possibly "[OsL2(N2)(solv)]" (solv=H2O or THF), which reacted with RCN, R'NC, and SO2 to give trans-[OsL2(RCN)2] (R=Ph (3), 4-tolyl (4), 4-t-BuC6H4 (5)), trans-[OsL2(R'NC)2] (R'=2,6-Me2C6H3 (xyl) (6), t-Bu (7)), and [Os(L)2(SO2)(H2O)] (8) complexes, respectively. Protonation of compounds 2, 3, and 6 with HBF4 led to formation of dicationic trans-[Os(LH)2(N2)(H2O)][BF4]2 (9), trans-[Os(LH)2(PhCN)2][BF4]2 (10), and trans-[Os(LH)2(xylNC)2][BF4]2 (11), respectively. Treatment of 1 with phenylhydrazine and SnCl2 afforded trans-[OsL2(N2Ph)2] (12) and trans-[OsL2Cl2] (13), respectively. Air oxidation of compound 2 in hexane/MeOH gave the dimethoxy complex trans-[OsL2(OMe)2] (14), which in CH2Cl2 solution was readily air oxidized to 1. Compound 1 is capable of catalyzing aerobic oxidation of PPh3, possibly via an Os(IV) intermediate. The formal potentials for the Os-L complexes have been determined by cyclic voltammetry. The solid-state structures of compounds 4, 6, cis-8, 13, and 14 have been established by X-ray crystallography.  相似文献   

19.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

20.
[structure: see text] The sterically bulky tert-butyl group occupies an apical position in trigonal bipyramidal phosphorus in the compound [CH2(6-t-Bu-4-Me-C6H2O)2]P(t-Bu)(1,2-O2C6Cl4) in contrast to the occupation of an equatorial position by the small methyl group in [CH2(6-t-Bu-4-Me-C6H2O)2]P(Me)(1,2-O2C6Cl4); this observation contradicts the familiar "apicophilicity rules" for trigonal bipyramidal phosphorus. Low-temperature solution 31P NMR spectra of [CH2(6-t-Bu-4-Me-C6H2O)2]P(R)(1,2-O2C6Cl4) (R = Me, Et, and n-Bu) show the presence of more than two isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号