首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new electron-rich, anionic, planar cluster complex [IrRu(6)(CO)(23)](-), 5, isolated as a PPN salt, PPN = [Ph(3)PNPPh(3) ](+), has been synthesized and characterized crystallographically. The complex exhibits unusual absorption and emission properties. Computational analyses have been performed to explain its metal-metal bonding and electronic properties. Anion 5 reacts with [Ph(3)PAu][NO(3)] to yield the uncharged planar complex Ru(5)Ir(CO)(20)AuPPh(3), 6, by metal atom substitution.  相似文献   

2.
The synthesis and reactivity of the thiophyne and furyne clusters [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, O) is reported. Addition of P(C4H3E)3 to [Ru3(CO)10(mu-dppm)] (1) at room temperature in the presence of Me3NO gives simple substitution products [Ru3(CO)9(mu-dppm)(P(C4H3E)3)] (E = S, 2; E = O, 3). Mild thermolysis in the presence of further Me3NO affords the thiophyne and furyne complexes [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 4; E = O, 6) resulting from both carbon-hydrogen and carbon-phosphorus bond activation. In each the C4H2E (E = S, O) ligand donates 4-electrons to the cluster and the rings are tilted with respect to the mu-dppm and the phosphido-bridged open triruthenium unit. Heating 4 at 80 degrees C leads to the formation of the ring-opened cluster [Ru3(CO)5(mu-CO)(mu-dppm)(mu3-eta3-SC4H3)(mu-P(C4H3S)2)] (5) resulting from carbon-sulfur bond scission and carbon-hydrogen bond formation and containing a ring-opened mu3-eta3-1-thia-1,3-butadiene ligand. In contrast, a similar thermolysis of 3 affords the phosphinidene cluster [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2O)(mu3-P(C4H3O))] (7) resulting from a second phosphorus-carbon bond cleavage and (presumably) elimination of furan. Treatment of 4 and 6 with PPh3 affords the simple phosphine-substituted products [Ru3(CO)6(PPh3)(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 8; E = O, 9). Both thiophyne and furyne clusters 4 and 6 readily react with hydrogen bromide to give [Ru3(CO)6Br(mu-Br)(mu-dppm)(mu3-eta2-eta1-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 10; E = O, 11) containing both terminal and bridging bromides. Here the alkynes bind in a highly unsymmetrical manner with one carbon acting as a bridging alkylidene and the second as a terminally bonded Fisher carbene. As far as we are aware, this binding mode has only previously been noted in ynamine complexes or those with metals in different oxidation states. The crystal structures of seven of these new triruthenium clusters have been carried out, allowing a detailed analysis of the relative orientations of coordinated ligands.  相似文献   

3.
Acid hydrolysis of [Ru(5)(CO)(15)(mu(4)-PN(i)Pr(2))] (2) or protonation of the anionic PO cluster [Ru(5)(CO)(15)(mu(4)-PO)](-) (3) affords the hydroxyphosphinidene complex [Ru(5)(CO)(15)(mu(4)-POH)].1.[H(2)N(i)()Pr(2)][CF(3)SO(3)], which cocrystallizes with a hydrogen-bonded ammonium triflate salt. Reaction of [Ru(5)(CO)(15)(mu(4)-PN(i)Pr(2))] (2) with bis(diphenylphosphino)methane (dppm) leads to [Ru(5)(CO)(13)(mu-dppm)(mu(4)-PN(i)Pr(2))] (4). Acid hydrolysis of 4 leads to the dppm-substituted hydroxyphosphinidene [Ru(5)(CO)(13)(mu-dppm)(mu(4)-POH)] (5), which is analogous to 1, but unlike 1, can be readily isolated as the free hydroxyphosphinidene acid. Compound 5 can also be formed by reaction of 3 with dppm and acid. The cationic hydride cluster [Ru(5)(CO)(13)(mu-dppm)(mu(3)-H)(mu(4)-POH)][CF(3)SO(3)] (6) can be isolated from the same reaction if chromatography is not used. Compound 4 also reacts with HBF(4) to form the fluorophosphinidene cluster [Ru(5)(CO)(13)(mu-dppm)(mu(4)-PF)] (7), while reaction with HCl leads to the mu-chloro, mu(5)-phosphide cluster [Ru(5)(CO)(13)(mu-dppm)(mu-Cl)(mu(5)-P)] (8).  相似文献   

4.
The ambient temperature reaction of the N-heterocyclic carbenes (NHCs) 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IDipp) with the triruthenium cluster [Ru(3)(CO)(12)], in a 3 : 1 stoichiometric ratio, results in homolytic cleavage of the cluster to quantitatively afford the complexes [Ru(CO)(4)(NHC)] (; NHC = IMes, ; NHC = IDipp). Reaction of the 2-thione or hydrochloride precursors to IMes, i.e. S[double bond, length as m-dash]IMes and IMes.HCl, with the same triruthenium cluster affords the complexes [Ru(4)(mu(4)-S)(2)(CO)(9)(IMes)(2)] () and [Ru(4)(mu(4)-S)(CO)(10)(IMes)(2)] () (3 : 1 and 2 : 1 reaction), and [{Ru(mu-Cl)(CO)(2)(IMes)}(2)] () (3 : 1 reaction) respectively. By contrast, the complex [Ru(3)(mu(3)-S)(2)(CO)(7)(IMeMe)(2)] (), where IMeMe is 1,3,4,5-tetramethylimidazol-2-ylidene, is the sole product of the 2 : 1 stoichiometric reaction of S[double bond, length as m-dash]IMeMe with [Ru(3)(CO)(12)]. Compounds -, and have been structurally characterised by single crystal X-ray diffraction.  相似文献   

5.
The reaction of the triosmium cluster anion, [Os(3)(micro-H)(CO)(11)][PPN] (PPN = [N(PPh(3))2]+), with [AgPF(6)] in the presence of [Ir(PPh(3))2(CO)Cl] in THF at room temperature affords two new high-nuclearity osmium-silver clusters, [Os(13)Ag(9)(CO)48][PPN] (1) and [Os(9)Ag(9)(micro3-O)2(CO)30][PPN] (2), and an iridium complex, [Ir(PPh(3))2(CO)Cl(O(2))] (3).  相似文献   

6.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

7.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

8.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

9.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   

10.
The reactions of doubly face-capped triruthenium cluster complexes of the type [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-R(2)CCHR(1))(mu-CO)(2)(CO)(6)] (HNNMe(2) = 1,1-dimethylhydrazide; R(2)CCHR(1) = alkenyl ligand) with terminal and internal alkynes have been studied in refluxing toluene. The following derivatives have been isolated from these reactions: [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-R(2)CCHR(1))(mu-kappa(2)-//-HCCH)(CO)(7)] (R(1) = R(2) = H, 5; R(1) = Ph, R(2) = H, 6; R(1) = CH(2)OMe, R(2) = H, 7 a; R(1) = H, R(2) = CH(2)OMe, 7 b) from acetylene, [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCH(2))(mu-kappa(2)-//-PhCCPh)(CO)(7)] (11) from diphenylacetylene, and three isomers of [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCH(2))(mu-kappa(2)-//-PhCCH)(CO)(7)] (14, 15 a, and 15 b) from phenylacetylene. These products result from substitution of a CO ligand by the alkyne and contain an Ru--Ru edge bridged by the alkyne ligand in a parallel manner. DFT calculations on selected isomeric products have helped to establish that the type of Ru--Ru edge bridged by the alkyne depends more on kinetic factors related to the size of the alkyne substituents than on the thermodynamic stability of the final products. The preparation of triruthenium cluster complexes with mu-//-alkyne ligands is unprecedented and seems to relate to the fact that the starting trinuclear complexes have their two triangular faces protected by capping ligands. The clusters bearing mu-//-acetylene (5-7) are thermodynamically unstable with respect to their transformation into edge-bridging vinylidene derivatives, [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCHR)(mu-kappa(1)-CCH(2))(CO)(7)] (R = H, 8; Ph, 9; CH(2)OMe, 10). DFT calculations have shown that complex 8 is 11.2 kcal mol(-1) more stable than its precursor 5. The thermolysis of compound 11 leads to [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu-kappa(4)-H(2)CCHCPhCPhCO)(mu-CO)(2)(CO)(5)] (12), which contains a novel edge-bridging dienoyl ligand that arises from an unusual coupling of diphenylacetylene, carbon monoxide, and the ethenyl ligand of complex 11. A chloro-bridged dimer of trinuclear clusters, [Ru(6)(mu-Cl)(2)(mu(3)-kappa(2)-HNNMe(2))(2)(mu(3)-kappa(2)-HCCH(2))(2)(mu-kappa(2)-PhCCHPh)(2)(mu-CO)(2)(CO)(10)] (13), has been prepared by treating compound 11 with hydrogen chloride. Therefore, edge-bridging parallel alkynes are susceptible to protonation to give edge-bridging alkenyl ligands. Compound 13 is the first complex to contain two alkenyl ligands on a trinuclear cluster, one face-capping and the other edge-bridging.  相似文献   

11.
Dinuclear iron(II)-cyanocarbonyl complex [PPN](2)[Fe(CN)(2)(CO)(2)(mu-SEt)](2) (1) was prepared by the reaction of [PPN][FeBr(CN)(2)(CO)(3)] and [Na][SEt] in THF at ambient temperature. Reaction of complex 1 with [PPN][SEt] produced the triply thiolate-bridged dinuclear Fe(II) complex [PPN][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)] (2) with the torsion angle of two CN(-) groups (C(5)N(2) and C(3)N(1)) being 126.9 degrees. The extrusion of two sigma-donor CN(-) ligands from Fe(II)Fe(II) centers of complex 1 as a result of the reaction of complex 1 and [PPN][SEt] reflects the electron-rich character of the dinuclear iron(II) when ligated by the third bridging ethylthiolate. The Fe-S distances (2.338(2) and 2.320(3) A for complexes 1 and 2, respectively) do not change significantly, but the Fe(II)-Fe(II) distance contracts from 3.505 A in complex 1 to 3.073 A in complex 2. The considerably longer Fe(II)-Fe(II) distance of 3.073 A in complex 2, compared to the reported Fe-Fe distances of 2.6/2.62 A in DdHase and CpHase, was attributed to the presence of the third bridging ethylthiolate, instead of pi-accepting CO-bridged ligand as observed in [Fe] hydrogenases. Additionally, in a compound of unusual composition ([Na.(5)/(2)H(2)O][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)])(n)((1)/(2)O(Et)(2))(n) (3), the Na(+) cations and H(2)O molecules combining with dinuclear [(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)](-) anions create a polymeric framework wherein two CN(-) ligands are coordinated via CN(-)-Na(+)/CN(-)-(Na(+))(2) linkages, respectively.  相似文献   

12.
Reaction of the methylcyclopentadienyl (Cp') cluster compound [(eta(5)-Cp')(3)Mo(3)S(4)][pts] (pts = p-toluenesulfonate) with noble metal alkene complexes resulted in the formation of four new heterobimetallic cubane-like Mo(3)S(4)M' cluster cores (M' = Ru, Os, Rh, Ir). Thus, reaction with [(1,5-cod)Ru(CO)(3)] or [(1,3-cod)Os(CO)(3)] (cod = cyclooctadiene) afforded [(eta(5)-Cp')(3)Mo(3)S(4)M'(CO)(2)][pts] (M' = Ru: [1][pts]; M' = Os: [2][pts]). When [1][pts] was kept in CH(2)Cl(2)/pentane solution, partial loss of carbonyl ligands occurred and the carbonyl-bridged dicubane cluster [((eta(5)-Cp')(3)Mo(3)S(4)Ru)(2)(mu-CO)(3)][pts](2) was isolated. An X-ray crystal structure revealed the presence of the hitherto unobserved Ru(mu-CO)(3)Ru structural element. The formation of cluster compounds containing Mo(3)S(4)Rh and Mo(3)S(4)Ir cores was achieved in boiling methanol by reacting [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [M'Cl(cyclooctene)(2)](2) (M' = Rh, Ir) in the presence of PPh(3). In this way [(eta(5)-Cp')(3)Mo(3)S(4)M'Cl(PPh(3))][pts] (M' = Rh, Ir) could be isolated. An alternative route to the Mo(3)S(4)Rh cluster core was found in the reaction of [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [RhCl(1,5-cod)](2), which yielded [(eta(5)-Cp')(3)Mo(3)S(4)Rh(cod)][pts](2) ([7][pts](2)). Substitution of the cod ligand in [7][pts](2) by 1,3-bis(diphenylphosphanyl)propane (dppp) gave [(eta(5)-Cp')(3)Mo(3)S(4)Rh(dppp)][pts](2).  相似文献   

13.
The complex [Fe(2)Cp(2)(μ-PMes*)(μ-CO)(CO)(2)] (Mes* = 2,4,6-C(6)H(2)(t)Bu(3)), which in the solid state displays a pyramidal phosphinidene bridge, reacted at room temperature with H(2) (ca. 4 atm) to give the known phosphine complex [Fe(2)Cp(2)(μ-CO)(2)(CO)(PH(2)Mes*)] as the major product, along with small amounts of other byproducts arising from the thermal degradation of the starting material, such as the phosphindole complex [Fe(2)Cp(2)(μ-CO)(2)(CO){PH(CH(2)CMe(2))C(6)H(2)(t)Bu(2)}], the dimer [Fe(2)Cp(2)(CO)(4)], and free phosphine PH(2)Mes*. During the course of the reaction, trace amounts of the mononuclear phosphide complex [FeCp(CO)(2)(PHMes*)] were also detected, a compound later found to be the major product in the carbonylation of the parent phosphinidene complex, with this reaction also yielding the dimer [Fe(2)Cp(2)(CO)(4)] and the known diphosphene Mes*P═PMes*. The outcome of the carbonylation reactions of the title complex could be rationalized by assuming the formation of an unstable tetracarbonyl intermediate [Fe(2)Cp(2)(μ-PMes*)(CO)(4)] (undetected) that would undergo a fast homolytic cleavage of a Fe-P bond, this being followed by subsequent evolution of the radical species so generated through either dimerization or reaction with trace amounts of water present in the reaction media. A more rational synthetic procedure for the phosphide complex was accomplished through deprotonation of the phosphine compound [FeCp(CO)(2)(PH(2)Mes*)](BF(4)) with Na(OH), the latter in turn being prepared via oxidation of [Fe(2)Cp(2)(CO)(4)] with [FeCp(2)](BF(4)) in the presence of PH(2)Mes*. To account for the hydrogenation of the parent phosphinidene complex it was assumed that, in solution, small amounts of an isomer displaying a terminal phosphinidene ligand would coexist with the more stable bridged form, a proposal supported by density functional theory (DFT) calculations of both isomers, with the latter also revealing that the frontier orbitals of the terminal isomer (only 5.7 kJ mol(-1) above of the bridged isomer, in toluene solution) have the right shapes to interact with the H(2) molecule. In contrast to the above behavior, the cyclohexylphosphinidene complex [Fe(2)Cp(2)(μ-PCy)(μ-CO)(CO)(2)] failed to react with H(2) under conditions comparable to those of its PMes* analogue. Instead, it slowly reacted with HOR (R = H, Et) to give the corresponding phosphinous acid (or ethyl phosphinite) complexes [Fe(2)Cp(2)(μ-CO)(2)(CO){PH(OR)Mes*}], a behavior not observed for the PMes* complex. The presence of BEt(3) increased significantly the rate of the above reaction, thus pointing to a pathway initiated with deprotonation of an O-H bond of the reagent by the basic P center of the phosphinidene complex, this being followed by the nucleophilic attack of the OR(-) anion at the P site of the transient cationic phosphide thus formed. The solid-state structure of the cis isomer of the ethanol derivative was determined through a single crystal X-ray diffraction study (Fe-Fe = 2.5112(8) ?, Fe-P = 2.149(1) ?).  相似文献   

14.
The binuclear phosphine complex [Fe(2)Cp(2)(μ-CO)(2)(CO)(PH(2)Ph)] (Cp = η(5)-C(5)H(5)) reacted with the acetonitrile adduct [Fe(2)Cp(2)(μ-CO)(2)(CO)(NCMe)] in dichloromethane at 293 K to give the trinuclear hydride-phosphinidene derivative [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(CO)(4)] as a mixture of cis,anti and trans isomers (Fe-Fe = 2.7217(6) ? for the cis,anti isomer). In contrast, photochemical treatment of the phosphine complex with [Fe(2)Cp(2)(CO)(4)] gave the phosphide-bridged complex trans-[Fe(3)Cp(3)(μ-PHPh)(μ-CO)(2)(CO)(3)] as the major product, along with small amounts of the binuclear hydride-phosphide complexes [Fe(2)Cp(2)(μ-H)(μ-PHPh)(CO)(2)] (cis and trans isomers), which are more selectively prepared from [Fe(2)Cp(2)(CO)(4)] and PH(2)Ph at 388 K. The photochemical decarbonylation of either of the mentioned triiron compounds led reversibly to three different products depending on the reaction conditions: (a) the 48-electron phosphinidene cluster [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(μ-CO)(2)] (Fe-Fe = 2.592(2)-2.718(2) ?); (b) the 50-electron complex [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(μ-CO)(CO)(2)], also having carbonyl- and hydride-bridged metal-metal bonds (Fe-Fe = 2.6177(3) and 2.7611(4) ?, respectively); and (c) the 48-electron phosphide cluster [Fe(3)Cp(3)(μ-PHPh)(μ(3)-CO)(μ-CO)(2)], an isomer of the latter phosphinidene complex now having three intermetallic bonds (Fe-Fe = 2.5332(8)-2.6158(8) ?).  相似文献   

15.
Treatment of the organoamido complexes [Rh(2)(mu-4-HNC(6)H(4)Me)(2)(L(2))(2)] (L(2) = 1,5-cyclooctadiene (cod), L = CO) with nBuLi gave solutions of the organoimido species [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(L(2))(2)]. Further reaction of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(cod)(2)] with [Rh(2)(mu-Cl)(2)(cod)(2)] afforded the neutral tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(cod)(4)] (2), which rationalizes the direct syntheses of 2 from [Rh(2)(mu-Cl)(2)(cod)(2)] and Li(2)NC(6)H(4)Me. Reactions of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(CO)(4)] with chloro complexes such as [Rh(2)(mu-Cl)(2)(CO)(4)], [MCl(2)(cod)] (M = Pd, Pt), and [Ru(2)(mu-Cl)(2)Cl(2)(p-cymene)(2)] afforded the homo- and heterotrinuclear complexes PPN[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)] (5; PPN=bis(triphenylphosphine)iminium), [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)M(cod)] (M = Pd (6), Pt(7)) and [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)Ru(p-cymene)] (8), while the reaction with [AuCl(PPh(3))] gave the tetranuclear compound [(CO)(4)Rh(2)(mu--4-NC(6)H(4)Me)(2)[Au(PPh(3))](2)] (9). The structures of complexes 6, 8, and 9 were determined by X-ray diffraction studies. The anion of 5 reacts with [AuCl(PPh(3))] to give the butterfly cluster [[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)]Au(PPh(3))] (10), in which the Au atom is bonded to two rhodium atoms. Reaction of the anion of 5 with [Rh(cod)(NCMe)(2)](BF(4)) gave the tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(CO)(6)(cod)] (11) in which the Rh(cod) fragment is pi-bonded to one of the arene rings, while the reaction of the anion of 5 with [PdCl(2)(cod)] afforded the heterotrinuclear complex 6 through a metal exchange process.  相似文献   

16.
The active iridium species in the methanol carbonylation reaction has been crystallized as the [PPN][IrI(2)(CO)(2)] complex and the X-ray structure solved, showing a cis-geometry and a square planar environment. Hydriodic acid reacts very quickly with this compound to provide [PPN][IrHI(3)(CO)(2)], the X-ray crystal structure of which has been determined. The two CO ligands remain in mutual cis-position in a pseudooctahedral environment. The same cis-arrangement has been observed from the X-ray structure for [PPN][IrI(3)(CH(3))(CO)(2)] resulting from the slower oxidative addition of CH(3)I to [PPN][IrI(2)(CO)(2)]. By iodide abstraction with InI(3), the anionic methyl complex gave rise to the dimeric neutral complex [Ir(2)(mu-I)(2)I(2)(CH(3))(2)(CO)(4)]. An X-ray structure showed that the methyl ligands are in the equatorial positions of the two octahedrons sharing an edge, formed by the two bridging iodide ligands. All these four complexes have been fully characterized by mass spectrometry, (1)H and (13)C NMR, and infrared both in solution and in the solid state. When necessary, the (13)CO- or (13)CH(3)-enriched complexes have been prepared and analyzed.  相似文献   

17.
18.
Exposure of acetonitrile/methanol solutions of [PPN][Ru(DPPBT)3] [PPN = bis(triphenylphosphoranylidene); DPPBT = 2-diphenylphosphinobenzene thiolate] to oxygen initiates metal-centered oxidation, yielding the ruthenium(III) thiolate Ru(DPPBT)3. Ru(DPPBT)3 further reacts with oxygen, at sulfur, to give the ruthenium(III) sulfinate complex [Ru(DPPBT-O2)2(DPPBT)], which is reduced under ambient conditions to [PPN][Ru(DPPBT-O2)2(DPPBT)]. Ruthenium(II) sulfinate is the only product isolated from acetonitrile/methanol. Yellow crystals of [PPN][Ru(DPPBT-O2)2(DPPBT)] were obtained. Ruthenium(III) sulfinate was isolated as green prism-shaped crystals upon oxygenation of [PPN][Ru(DPPBT)3] in chlorobenzene/hexane. Electrochemical oxidation of ruthenium(II) sulfinate yields the ruthenium(III) derivative, which is rapidly reduced back to ruthenium(II) upon the addition of hydroxide.  相似文献   

19.
Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.  相似文献   

20.
The protonation of [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNO)] (1) with HBF(4) occurs at the oxygen of the noncoordinating side of the trans-hyponitrite ligand to give [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOH)][BF(4)] (2) in good yield. The monoprotonated hyponitrite in 2 is deprotonated easily by strong bases to regenerate 1. Furthermore, 1 reacts with the methylating reagent [Me(3)O][BF(4)] to afford [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOMe)][BF(4)] (3). The molecular structures of 2 and 3 have been determined crystallographically, and the structure of 2 is discussed with the results of the DFT/B3LYP calculations on the model complex [Ru(2)(CO)(4)(mu-H)(mu-PH(2))(mu-H(2)PCH(2)PH(2))(mu-eta(2)-ONNOH)](+) (2a). Moreover, the thermolysis of 2 in ethanol affords [Ru(2)(CO)(4)(mu-H)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)][BF(4)] (4) in high yield, and the deprotonation of 4 by DBU in THF yields the novel complex [Ru(2)(CO)(4)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)] (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号