首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li B  Rong G  Xie Y  Huang L  Feng C 《Inorganic chemistry》2006,45(16):6404-6410
Novel alpha-MnO2 hollow urchins were synthesized on a large scale by a facile and efficient low-temperature (60 degrees C) mild reduction route, without templates or surfactants in the system. The formation mechanism for the hollow urchins was proved to be the Ostwald ripening process by tracking the crystallization and morphology of the product at different reaction stages. The as-prepared hollow-urchin sample has a high Brunauer-Emmett-Teller surface area of 132 m(2)/g and a mesoporous structure, which were expected to help improve the electrochemical property in Li+ batteries. When the alpha-MnO2 hollow urchins were used as the cathode material in Li batteries, they performed better than the other alpha-MnO2 samples (solid urchins and dispersed nanorods), indicating that the electrochemical performance of the electrode material is sensitive to its morphology. This synthetic procedure is straightforward and inexpensive and thus facilitates mass production of alpha-MnO2 hollow urchins.  相似文献   

2.
A new type of hierarchical structure, a core-shell structure with spherically aligned nanorods, was prepared via a simple room-temperature solution-based catalytic route in the case of alpha-MnO2.  相似文献   

3.
A green chemistry approach has been furnished for photochemical deposition of alpha-MnO2 nanorods onto the surface of functionalized polystyrene beads through immobilization of MnO4- in alkaline condition under visible light. Then the composite material was exploited as a fruitful and novel solid-phase catalyst for the one-step and facile synthesis of amide compounds from nitriles under visible light in weakly basic medium.  相似文献   

4.
使用稀土元素Tb作催化剂, 通过氨化溅射在Si(111)衬底上的Ga2O3/Tb薄膜, 成功制备出GaN纳米棒. X射线衍射测试显示, GaN纳米棒具有六方结构. 利用扫描电子显微镜和高分辨透射电子显微镜观察分析得出, 纳米棒为单晶GaN, 纳米棒的直径为50-150 nm, 长度约10 μm. 光致发光谱在368.6 nm处有一强的紫外发光峰, 说明纳米棒具有良好的发光特性. 讨论了GaN纳米棒的生长机制.  相似文献   

5.
A hydrothermal cleavage-decomposition mechanism was used to synthesize single-crystal α-Mn2O3 nanorods at 160 °C for 16 h using KMnO4 as manganese source and CTAB as reducing regent. The as-synthesized products were characterized by powder X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and infrared spectrum. The results indicate that the reaction temperature is a crucial factor for the formation of α-Mn2O3 nanorods. These nanorods exhibit single-crystal nature, and have an average diameter of 36 nm and lengths of up to 1 μm. Based on our experimental results, a hydrothermal cleavage-decomposition mechanism has been proposed on the formation of α-Mn2O3 nanorods.  相似文献   

6.
In this study, we describe a simple approach to preparing single-crystal Fe3O4 nanorods in the presence of poly(vinylpyrrolidone) (PVP). The morphologies of the nanorods are characterized by transmission electron microscopy (TEM), which indicates that these nanorods are formed by nucleation and growth process in situ in aqueous solution. A superconducting quantum interference device (SQUID) magnetometer characteristic of the as-synthesized Fe3O4 nanorods shows superparamagnetic properties.  相似文献   

7.
Single-crystal Mn3O4 nanorods with tetragonal structure have been successfully prepared by a chemical reaction route. Transmission electron microscopy (TEM) and high-resolution TEM studies prove that the single-crystal Mn3O4 nanorod is smooth and straight, and that the geometrical shape is structurally perfect. We investigated the electronic characteristics of Mn3O4 nanorods by various spectral evaluations. The present study confirms that the hybridization between oxygen 2p and manganese 3d orbits plays an important role when considering electronic structures of Mn3O4 nanorods.  相似文献   

8.
A novel and simple approach is reported to fabricate uniform single-crystal ZnO nanorods in ionic liq-uids. The as-obtained ZnO nanorods have been characterized by XRD,TEM,HRTEM,SAED,XPS,EDXA,PL and UV-vis absorption spectra. The rod diameters of the nanostructures can be controlled by tuning the amount of sodium hydroxide in the synthesis. Photoluminescence results show that the nanos-tructural ZnO exhibits better optical properties than bulk ZnO does and interestingly,the smaller the rod diameters are,the better optical property 1D nanostructural ZnO exhibits. The possible growth mechanism of ZnO nanorods is also investigated.  相似文献   

9.
Li C  Wang X  Peng Q  Li Y 《Inorganic chemistry》2005,44(19):6641-6645
Mn2P2S6 single-crystal nanorods with diameters 20-40 nm and lengths up to 1 microm and nanotubes with diameters 40-50 nm and lengths ranging between 110 and 170 nm have been prepared through a low-temperature solvothermal method. They have been characterized by X-ray diffraction, transmission electron microscopy (TEM), high-resolution (HR) TEM, electron diffraction, energy-dispersive spectrometry analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy.  相似文献   

10.
Zhang H  Huang J  Zhou X  Zhong X 《Inorganic chemistry》2011,50(16):7729-7734
High-quality Bi(2)S(3) discrete single-crystal nanosheets with orthorhombic structure have been synthesized through the thermal decomposition of a single-source precursor, Bi(S(2)CNEt(2))(3), in amine media. The morphology evolution reveals that the Bi(2)S(3) nanosheets are developed through the assembly of nanorods, and an attachment-recrystallization growth mechanism is proposed for the formation of nanosheets with the use of nanorods as building blocks. High-resolution transmission electron microscopy studies reveal that the nanosheets have the largest exposed surface of (100) facets. The effects of experimental variables, such as the reaction temperature, time, precursor concentration, and media, on the morphology of the obtained nanocrystals have been systematically investigated in which the amine has served as the solvent, surfactant, and electron donor.  相似文献   

11.
Vertically aligned single-crystal ZnO nanorods have been successfully fabricated on semiconducting GaN, Al0.5Ga0.5N, and AlN substrates through a vapor-liquid-solid process. Near-perfect alignment was observed for all substrates without lateral growth. Room-temperature photoluminescence measurements revealed a strong luminescence peak at approximately 378 nm. This work demonstrates the possibility of growing heterojunction arrays of ZnO nanorods on AlxGa1-xN, which has a tunable band gap from 3.44 to 6.20 eV by changing the Al composition from 0 to 1, and opens a new channel for building vertically aligned heterojunction device arrays with tunable optical properties and the realization of a new class of nanoheterojunction devices.  相似文献   

12.
锰氧化物是一类重要的且具有广泛应用背景的材料, 控制合成不同形貌和组成的锰氧化物纳米结构将有助于拓宽其应用领域. 本文报道了以Mn3O4为前驱体, 通过水热法控制合成MnO2纳米结构的方法. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等手段对产物进行表征. 在硫酸体系中,当反应温度为80 和180 ℃时, 所得产物分别为γ-MnO2海胆结构和β-MnO2单晶纳米棒. 此外, MnOOH纳米线可以在稀酸溶液中合成. 考察了反应温度、溶液酸度、反应时间对产物结构的影响, 并提出了基于γ-MnO2为中间产物的反应机理. 实验结果表明, 水热体系促进了产物的各向异性生长并最终形成不同形貌和结构的锰氧化物.  相似文献   

13.
Two new Melamine-Keggin hybrid nanorods, MELH-PMo12 and MELH-PW12, for the first time are successfully synthesized by two chemical methods, one-step solid-state chemical reaction method and experimental solvent diffusion method at room temperature. One-step solid-state reactions involve grounded nanorod materials along with grinding of row material and with solvent diffusion method these nanorods synthesized in single crystals form. These compounds crystallized in trigonal space groups P-3. Elemental analysis, infrared spectroscopy, UV spectroscopy and XRD analysis results prove that the samples still possess Keggin type structure. Transmittance electron microscopy and single-crystal X-ray have shown that the samples have nanorod structures.  相似文献   

14.
Liang J  Peng Q  Wang X  Zheng X  Wang R  Qiu X  Nan C  Li Y 《Inorganic chemistry》2005,44(25):9405-9415
A general synthesis route to a family of single-crystal chromate nanorods/nanobelts has been established. The effects of pH and surfactant on phase and morphology of these microcrystalline materials have been investigated. The physical properties of the as-synthesized chromate nanocrystals such as dielectric, electrochemical, UV-vis absorbance, and photoluminescent properties have also been studied. The present general synthesis of various low-dimensional chromate nanomaterials provides useful information on the possible synthesis of other microcrystalline transition metal oxysalts.  相似文献   

15.
Octamethoxy calix[8]arenes substituted in the para position by amide, urea, and imide functions were synthesized from the octamethyl ether of tert-butylcalix[8]arene by ipso nitration, reduction, and acylation. Scanning force microscopy of spin coated samples on graphite suggests that these derivatives self-organize into tubular nanorods via hydrogen bonds between p-amide functions. A single-crystal X-ray structure reveals a centrosymmetric conformation for the octanitro derivative. [structure: see text]  相似文献   

16.
Alpha-, beta-, gamma-, and delta-MnO(2) single-crystal nanowires/nanorods with different aspect ratios have been successfully prepared by a common hydrothermal method based on the redox reactions of MnO(4)(-) and/or Mn(2+). The influences of oxidant, temperature, and inorganic cation (NH(4)(+) and K(+)) template concentrations on the morphology and crystallographic forms of the final products are discussed in this paper. It is interesting to find that all the MnO(2) one-dimensional nanostructures have a similar formation process: delta-MnO(2), which has a layer structure, serves as an important intermediate to other forms of MnO(2), and is believed to be responsible for the initial formation of MnO(2) one-dimensional nanostructures. A rolling mechanism has been proposed based on the results of the series of TEM images and XRD patterns of the intermediate.  相似文献   

17.
使用TiCl4溶液对单晶TiO2纳米棒阵列(TNRs)进行修饰,通过在TiO2纳米棒表面合成TiO2纳米颗粒来提高TNRs的表面积,提高TNRs对量子点的吸附能力,并在此基础上研究了TiCl4修饰时间对基于单晶TNRs的CdS/CdSe量子点敏化太阳电池光伏性能的影响,同时结合强度调制光电流谱(IMPS)研究了TiO2纳米棒阵列的电子传输性能.结果表明:TiCl4修饰可以大幅提高基于单晶TNRs的CdS/CdSe量子点敏化太阳电池的光伏性能,在TiCl4修饰时间为60 h时,其短路电流密度和光电转换效率分别由修饰前的(2.93±0.07)mA·cm-2和0.36%±0.02%提高至(8.19±0.12)mA·cm-2和1.17%±0.07%.同时,IMPS测试表明电子在单晶TiO2纳米棒阵列中的传输速率高于在TiO2纳米颗粒薄膜中的传输速率,证明了单晶TiO2纳米棒阵列在电子传输方面的优越性.  相似文献   

18.
The simultaneous phase- and size-controlled synthesis of TiO(2) nanorods was achieved via the non-hydrolytic sol-gel reaction of continuously delivered two titanium precursors using two separate syringe pumps. As the injection rate was decreased, the length of the TiO(2) nanorods was increased and their crystalline phase was simultaneously transformed from anatase to rutile. When the reaction was performed by injecting titanium precursors contained in two separate syringes into a hot oleylamine surfactant solution with an injection rate of 30 mL/h, anatase TiO(2) nanorods with dimensions of 6 nm (thickness) x 50 nm (length) were produced. When the injection rate was decreased to 2.5 mL/h, star-shaped rutile TiO(2) nanorods with dimensions of 25 nm x 200 nm and a small fraction of rod-shaped anatase TiO(2) nanorods with dimensions of 9 nm x 100 nm were synthesized. Pure star-shaped rutile TiO(2) nanorods with dimensions of 25 nm x 450 nm were synthesized when the injection rate was further decreased to 1.25 mL/h. The simultaneous phase transformation and length elongation of the TiO(2) nanorods were achieved. Under optimized reaction conditions, as much as 3.5 g of TiO(2) nanorods were produced. The TiO(2) nanorods were used to produce dye-sensitized solar cells, and the photoconversion efficiency of the mixture composed of star-shaped rutile TiO(2) nanorods and a small fraction of anatase nanorods were comparable to that of Degussa P-25.  相似文献   

19.
Organic monolayer protected Cu2S nanorods, 4 nm in diameter and 12 nm long, were synthesized using a novel solventless synthetic approach. Thermolytic degradation of a copper thiolate precursor at temperatures ranging from 140 to 200 degrees C produces Cu2S nanorods. Higher temperatures promote isotropic growth of spherical nanocrystals. X-ray diffraction and high-resolution TEM reveal that the nanorods exhibit a hexagonal Cu2S crystal structure, which in the bulk is ferroelectric. The appropriate reaction conditions produce nanorods that are size and shape monodisperse and organize into smectic superlattices. The extent of superlattice ordering and the appearance of extended strands of nanorods provide evidence for strong dipole-dipole coupling between Cu2S nanorods.  相似文献   

20.
Preparation and optical properties of worm-like gold nanorods   总被引:1,自引:0,他引:1  
A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold-gold sulfide core-shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis-NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号