首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A non-aqueous and an aqueous photopolymer system with an enzyme are used to prepare photolithographically patterned enzyme membranes for amperometric (thinfilm platinum electrode) and potentiometric (ISFET) sensors based on enzyme inhibition. Flow methods for enzyme inhibition tests are described. The decrease in enzyme (AChE) activity after incubation in a solution of dichlorvos as inhibitor is detected amperometrically. The enzyme urease is immobilized onto the pH-sensitive gate area of an ISFET. Such a biosensor is able to detect copper-(II) in water in the ppm-range without preconcentration.Dedicated to Professor Dr. Wilhelm Fresenius on the occasion of his 80th birthday  相似文献   

2.
A biosensor for the detection of insecticides based on an ion-sensitive field-effect transistor (ISFET) was developed. The resulting device combines the simplicity of potentiometric sensors and the use of associated electronic systems as powerful tools for the acquisition and the processing of data. The enzyme acetylcholinesterase (AChE) was entrapped in a membrane placed on the gate of the ISFET forming an enzyme field-effect transistor (EnFET). The biosensor is applied to the determination of pesticides in spiked real samples. Organophosphorous and carbamate insecticides were measured with a detection limit of 10(-8) mol L(-1). The measurement is based on the production of hydrogen ions due to the hydrolysis of acetylthiocholine by the enzyme. The resulting local pH change is picked up by the underlying pH-sensitive ISFET and transduced as potential variations. The preparation of the membrane is simple and reproducible. The analysis in spiked real samples was performed in tap water and showed detection limits comparable to those obtained by other researchers.  相似文献   

3.
A new biosensor sensitive to chloride anion using a light-driven chloride pump protein, halorhodopsin (hR), and an ion-sensitive field effect transistor (ISFET) has been developed. Membrane vesicles of halophilic bacteria containing hR were immobilized in the matrix of polyvinylbutyral resin on the surface of the ISFET. The gate voltage of this device changed in the min time scale under yellow light illumination. The response for chloride anion increased according to the increase of chloride anion concentration in the bulk aqueous phase. In the dark, the gate potential did not change even in the presence of chloride anion. These chloride-dependent gate potential changes of the hR-ISFET indicate that the chloride pumping by hR is active on the ISFET and that ISFET detects the light-dependent chloride transport by hR.  相似文献   

4.
Dopamine (1) and tyrosinase (TR) activities were analyzed by using chemically modified ion-sensitive field-effect transistor (ISFET) devices. In one configuration, a phenylboronic acid functionalized ISFET was used to analyze 1 or TR. The formation of the boronate-1 complex on the surface of the gate altered the electrical potential associated with the gate, and thus enabled 1 to be analyzed with a detection limit of 7x10(-5) M. Similarly, the TR-induced formation of 1, and its association with the boronic acid ligand allowed a quantitative assay of TR to be performed. In another configuration, the surface of the ISFET gate was modified with tyramine or 1 to form functional surfaces for analyzing TR activities. The TR-induced oxidation of the tyramine- or 1-functionalized ISFETs resulted in the formation of the redox-active dopaquinone units. The control of the gate potential by the redox-active dopaquinone units allowed a quantitative assay of TR to be performed. The dopaquinone-functionalized ISFETs could be regenerated to give the 1-modified sensing devices by treatment with ascorbic acid.  相似文献   

5.
We report a successful facile and novel approach for in situ synthesis of gold nanoparticles (AuNPs) via enzymatic dephosphorylation reaction at room temperature. Fmoc-tyrosine phosphate and cytidine-5-mono phosphate are used to sense the activities of an enzyme alkaline phosphatase. Formation of AuNps is highly selective towards biomolecules and it is readily detected colorimetrically and UV–Vis analysis. In this procedure, dephosphorylated product plays both roles as reducing and stabilizing agent to direct the formation of AuNPs in aqueous media. Transmission electron microscopic study reveales that hexagonal AuNPs were synthesized by using Fmoc-tyrosine phosphate and alkaline phosphatase. Wide angle X-ray scattering data confirms the formation of AuNPs. FT-IR studies confirm that biomolecules play crucial role to stabilize the AuNPs by molecular interactions with the surface of AuNPs. In situ synthesized AuNPs are applied for the sensing of enzyme activity.  相似文献   

6.
Haberkorn M  Hinsmann P  Lendl B 《The Analyst》2002,127(1):109-113
A novel mid-IR flow-through sensor for in situ monitoring of the enzymatic reaction of amyloglucosidase with carbohydrates was developed. Amyloglucosidase was immobilised on agarose beads with N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and directly placed in a conventional IR flow-through cell. The carbohydrate content of various beer samples was then determined by following the enzymatic hydrolytic cleavage of carbohydrates to glucose with Fourier-transform infrared (FTIR) spectroscopy. The whole procedure was done in an automated way operating in the stopped flow mode by incorporating the flow-through sensor in a sequential injection (SI) manifold. As the immobilised enzyme was directly probed by the IR beam, an in situ study of the enzymatic reaction was possible enabling determination of the Michaelis-Menten constant of the immobilised enzyme. A linear calibration curve was recorded using maltose standards in the range between 0.86 and 7.13 g L(-1). The proposed method was successfully applied to the determination of the carbohydrate content of four different beer samples by the standard addition method. Moreover experiments showed the possibility of monitoring in situ the immobilisation of the enzyme as well as a small organic acid (malic acid) on the agarose beads using EDC.  相似文献   

7.
A highly branched polyethyleneimine (PEI) was used as a spacer for immobilizing alpha-chymotrypsin on the surface of Langmuir-Blodgett (LB) membranes which were deposited on the gate of an ion-sensitive field effect transistor (ISFET). alpha-Chymotrypsin could be covalently immobilized through the glutaraldehyde-activated PEI on the LB membrane-coated ISFET. The alpha-chymotrypsin-modified ISFET showed a potentiometric response to the substrate at concentrations of more than 0.1 mM. Some performance characteristics of the sensor, such as pH response, response time, and long-term stability were examined.  相似文献   

8.
To understand the fundamentals of enzymatic reactions confined in micro‐/nanosystems, the construction of a small enzyme reactor coupled with an integrated real‐time detection system for monitoring the kinetic information is a significant challenge. Nano‐enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real‐time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass‐transport‐related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano‐enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 μL min?1), the enzymatic reaction kinetics became the rate‐determining step. This change resulted in the decrease in the conversion efficiency of the nano‐enzyme reactor and the apparent Michaelis–Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.  相似文献   

9.
An alcohol -FET sensor was developed by use of a complex enzyme system in a cell membrane and an ion-sensitive field effect transistor (ISFET). The cell membrane of Gluconobacter suboxydans IFO 12528, which converts ethanol to acetic acid, was immobilized on the gate of an ISFET with calcium alginate gel coated with nitrocellulose. This ISFET (1), a reference ISFET without the cell membrane (ISFET 2) and an Ag/AgCl reference electrode were placed in 5 mM Trismalate buffer (pH 5.5, 25°C), and the differential output between ISFETS 1 and 2 was measured. The output of the sensor was stabilized by adding pyrroloquinoline quinone. The response time was ca. 10 min., and there was a linear relationship between the differential output voltage and the ethanol concentration up to 20 mg l?1. The output of the sensor was stable for 40 h below 30°C. The sensor responded to ethanol, propan- 1-ol and butan- 1-ol, but not to methanol, propan-2-ol and butan-2-ol. The sensor was used to determine blood ethanol.  相似文献   

10.
Catalysis for chemical synthesis by cell-free monooxygenases necessitates an efficient and robust in situ regeneration system to supply the enzyme with reducing equivalents. We report on a novel approach to directly regenerate flavin-dependent monooxygenases. The organometallic complex [CpRh(bpy)(H(2)O)](2+) catalyzes the transhydrogenation reaction between formate and isoalloxazine-based cofactors such as FAD and FMN. Coupling this FADH(2) regeneration reaction to the FADH(2)-dependent styrene monooxygenase (StyA) resulted in a chemoenzymatic epoxidation reaction where the organometallic compound substitutes for the native reductase (StyB), the nicotinamide coenzyme (NAD), and an artificial NADH regeneration system such as formate dehydrogenase. Various styrene derivatives were converted into the essentially optically pure (S)-epoxides (ee > 98%). In addition, StyA was shown to be capable of performing sulfoxidation reactions. The productivity of the chemoenzymatic epoxidation reaction using 6.5 microM StyA reached up to 6.4 mM/h, corresponding to approximately 70% of a comparable fully enzymatic reaction using StyB, NADH, and formate dehydrogenase for regeneration. The coupling efficiency of the nonenzymatic regeneration reaction to enzymatic epoxidation was examined in detail, leading to an optimized reaction setup with minimized quenching of the electron supply for the epoxidation reaction. Thus, up to 60% of the reducing equivalents provided via [CpRh(bpy)(H(2)O)](2+) could be channeled into epoxide rather than hydrogen peroxide formation, allowing selective synthesis with high yields.  相似文献   

11.
Wakida S  Yamane M  Hiiro K 《Talanta》1988,35(4):326-328
A durable chloride ion-selective field effect transistor (ISFET) is proposed with Urushi as the membrane matrix. The chloride ion-sensing material is a quaternary ammonium chloride: trioctylmethylammonium chloride (TOMA-Cl) or tridodecylmethylammonium chloride (TDMA-Cl). The optimum composition of the Urushi membrane was found by use of Urushi ion-selective electrodes. The mixture with the most favourable composition was coated on the gate region of the FET device. The Urushi ISFET with TDMA-Cl proved to be superior to that with TOMA-Cl, in sensitivity, linearity and selectivity. The Urushi ISFET with TDMA-Cl showed a linear response of about -51 mV per decade change of chloride ion activity in the range 10(-4)-1M. The Urushi ISFET showed excellent stability and durability for over two months, because of strong adhesion of the membrane to the Si(3)N(4) gate.  相似文献   

12.
Different hydrophobic polymers were used for chemical modification of ion-sensitive field effect transistors (ISFETs) in order to prepare a reference FET (REFET). Chemical attachment of the polymer to the ISFET gate results in a long lifetime of the device. Properties of polyacrylate (polyACE) REFETs are described in detail. The polyACE-REFET is superior to other polymer modified REFETs, showing an excellent pH insensitivity (?1 mV pH?1), a long lifetime and an electrically identical behaviour as an unmodified pH ISFET or a cation-selective PVC-MEMFET (membrane FET). The cation permeselectivity of the polymer can be significantly reduced by addition of immobile cations. The applicability of a polyACE-REFET in differential measurements with a pH ISFET and a K+ MEMFET is demonstrated.  相似文献   

13.
Metal–organic frameworks (MOFs) are suitable enzyme immobilization matrices. Reported here is the in situ biomineralization of glucose oxidase (GOD) into MOF crystals (ZIF-8) by interfacial crystallization. This method is effective for the selective coating of porous polyethersulfone microfiltration hollow fibers on the shell side in a straightforward one-step process. MOF layers with a thickness of 8 μm were synthesized, and fluorescence microscopy and a colorimetric protein assay revealed the successful inclusion of GOD into the ZIF-8 layer with an enzyme concentration of 29±3 μg cm−2. Enzymatic activity tests revealed that 50 % of the enzyme activity is preserved. Continuous enzymatic reactions, by the permeation of β-d -glucose through the GOD@ZIF-8 membranes, showed a 50 % increased activity compared to batch experiments, emphasizing the importance of the convective transport of educts and products to and from the enzymatic active centers.  相似文献   

14.
Metal–organic frameworks (MOFs) are suitable enzyme immobilization matrices. Reported here is the in situ biomineralization of glucose oxidase (GOD) into MOF crystals (ZIF‐8) by interfacial crystallization. This method is effective for the selective coating of porous polyethersulfone microfiltration hollow fibers on the shell side in a straightforward one‐step process. MOF layers with a thickness of 8 μm were synthesized, and fluorescence microscopy and a colorimetric protein assay revealed the successful inclusion of GOD into the ZIF‐8 layer with an enzyme concentration of 29±3 μg cm?2. Enzymatic activity tests revealed that 50 % of the enzyme activity is preserved. Continuous enzymatic reactions, by the permeation of β‐d ‐glucose through the GOD@ZIF‐8 membranes, showed a 50 % increased activity compared to batch experiments, emphasizing the importance of the convective transport of educts and products to and from the enzymatic active centers.  相似文献   

15.
 The development of a new type of microsensors based on chemically sensitive field-effect transistors (CHEMFETs) covered with polymeric bulk ion-partitioning membranes is presented. For the construction of the microsensor, a PVC plasticized membrane containing two ionophores, one selective to protons and the other to the analyte cation of interest, is placed on the gate of a pH sensitive field-effect transistor which acts as the transducer. With the use of thin (5–10 μm) ion-partitioning membranes onto the pH-sensitive ISFET gate, the proton displacement out of the membrane and to the pH sensitive gate is fast and reversible. This displacement generates a signal that is directly related to the analyte concentration found in the test solution. Comparing the performance of CHEMFETs and ISEs selective to the monovalent potassium cation and the divalent calcium ion validates this novel CHEMFET response mechanism.  相似文献   

16.
A photopolymer solution consisting of polyvinylpyrrolidone and 2,5-bis(4′-azido-2′-sulfobenzal)cyclopentanone is used to make a patterned glucose oxidase membrane for a FET-glucose sensor by photolithography. A small patterned glucose oxidase membrane, 0.2 mm wide and 1 mm long, is made on the gate surface of an ISFET by developing a photocross-linked glucose oxidase membrane with aqueous 1–3% glutaraldehyde solution. The optimum composition of the enzyme/photopolymer solution is described. The sensor with the patterned membrane showed linear response to glucose concentration from 0.3 to 2.2 mM and useful response up to 5 mM.  相似文献   

17.
The gate surface of an ion-sensitive field effect transistor (ISFET) was modified with Langmuir-Blodgett (LB) film composed of fatty acid or crown ether amphiphiles to examine their potentiometric response to H+ and K+ ions. The results demonstrate the possible use of the lipid films for preparing ISFET ion sensors.  相似文献   

18.
The development of nanoparticle‐based biomedical applications has been hampered due to undesired off‐target effects. Herein, we outline a cellular AND gate to enhance uptake selectivity, in which a nanoassembly–cell interaction is turned on, only in the concurrent presence of two different protein functions, an enzymatic reaction (alkaline phosphatase, ALP) and a ligand–protein (carbonic anhydrase IX, CA IX) binding event. Selective uptake of nanoassemblies was observed in cells that overexpress both of these proteins (unicellular AND gate). Interestingly, selective uptake can also be achieved in CA IX overexpressed cells, when cocultured with ALP overexpressed cells, where the nanoassembly presumably acts as a mediator for cell–cell communication (bicellular AND gate). This logic‐gated cellular uptake could find use in applications such as tumor imaging or theranostics.  相似文献   

19.
Semiconductor fabrication technology was used for development of ion sensitive field effect transistor (ISFET) and micro-electrodes which have been utilized as transducers of enzyme-based microbiosensors. A urea sensor consisted of two ISFETs; one ISFET is urease-coated ISFET and the other ISFET is reference ISFET. A linear relationship was obtained between the initial rate of voltage change and the logarithm of urea concentration over the range 1.3 to 16.7 mM. ATP and hypoxanthine sensors were also developed utilizing ISFET as a transducer. Furthermore, microelectrodes such as hydrogen peroxide and oxygen sensors were prepared by the silicone fabrication technology. A glucose sensor consisted of a hydrogen peroxide electrode and immobilized glucose oxidase membrane. A linear relationship was observed between the current increase and the concentration of glucose (1–100 mg dl−1). A microoxygen electrode was constructed from Au electrodes, polymer matrix containing alkaline electrolyte and a photocross-linkable polymer membrane. This electrode was used as a transducer in microglucose sensor. A microglutamic acid sensor is also described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号