首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对具有吸收-透射性边界面的梯度折射率半透明介质层,建立了介质内热辐射传递与边界面辐射换热的数理模型,并采用数值弯曲光线跟踪法求解介质内的热辐射传递。通过数值模拟,分析了正弦折射率下,边界面的反射特性、吸收率以及介质层光学厚度对介质内热辐射平衡温度场及热流分布的影响。结果表明,边界面的反射特性与吸收率对介质内辐射换热均有重要影响,吸收率的影响与边界面反射特性、介质层光学厚度及环境条件相关,呈现特征不同的作用。  相似文献   

2.
This paper introduces a 3-D transient finite element model of laser cladding by powder injection to investigate the effects of laser pulse shaping on the process. The proposed model can predict the clad geometry as a function of time and process parameters including laser pulse shaping, travel velocity, laser pulse energy, powder jet geometry, and material properties. In the proposed strategy, the interaction between powder and melt pool is assumed to be decoupled and as a result, the melt pool boundary is first obtained in the absence of powder spray. Once the melt pool boundary is obtained, it is assumed that a layer of coating material is deposited on the intersection of the melt pool and powder stream in the absence of the laser beam in which its thickness is calculated based on the powder feedrate and elapsed time. The new melt pool boundary is then calculated by thermal analysis of the deposited powder layer, substrate and laser heat flux. The process is simulated for different laser pulse frequencies and energies. The results are presented and compared with experimental data. The quality of clad bead for different parameter sets is experimentally evaluated and shown as a function of effective powder deposition density and effective energy density. The comparisons show excellent agreement between the modeling and experimental results for cases in which a high quality clad bead is expected.  相似文献   

3.
Two-dimensional radiation transfer in a powder layer backed with a substrate of the same material and normally irradiated with a narrow axially symmetric bell-like or the flat-top laser beam is numerically calculated. This corresponds to physical experiments with the powder layer of 50 μm thickness and the laser beam diameters 60–120 μm. The powder bed is treated as an equivalent homogeneous absorbing scattering medium, the radiative properties of which are estimated from the optical properties of the solid phase and the morphological parameters of the powder bed. The theoretical analysis shows that the absorptance of a semi-infinite powder bed of opaque particles is a universal function of the absorptivity of the solid phase being independent of the specific surface and the porosity. This is confirmed by literature experimental data. The radial transport of the radiative energy due to scattering of the incident laser beam in the powder layer can considerably reduce the deposited energy at the centre of the beam but the widening of the radial profile of the deposited energy is not pronounced. The fraction of laser energy deposited within the projection of the incident laser beam is evaluated. The efficiencies of laser heating the whole powder/substrate system and the substrate decrease with increasing the reflectivity of the material. More uniform heating of the powder layer can be attained at higher reflectivity.  相似文献   

4.
A calculation is presented for the deformation of a solid surface when subjected to laser irradiation. The elastic response of the target is given in terms of the stress and displacement field due to thermal expansion, thus allowing an explicit evaluation of the shape of the deformed target surface. Quantitative results are obtained for the height and shape of the induced bump as a function of the laser pulse and target properties. The thermal load threshold is specified for the onset of plastic yield.  相似文献   

5.
Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function.  相似文献   

6.
We track individual twin boundaries in Ag films on Ru(0001) using low-energy electron microscopy. The twin boundaries, which separate film regions whose close-packed planes are stacked differently, move readily during film growth but relatively little during annealing. The growth-driven motion of twin boundaries occurs as film steps advance across the surface--as a new atomic Ag layer reaches an fcc twin boundary, the advancing step edge carries along the boundary. This coupling of the microstructural defect (twin boundary) and the surface step during growth can produce film regions over 10 microm wide that are twin free.  相似文献   

7.
高能激光对复合材料的辐照效应研究,可以拓展激光技术的应用范围。为了预测激光辐照下碳纤维增强复合材料的瞬态热响应,提出了一个简化计算模型。采用隐式有限体积方法求解控制方程,边界条件包括激光辐照加热、对流换热、辐射换热以及材料表面烧蚀。考虑了激光辐照过程中基体热分解、质量迁移、比热容变化情况。基于该烧蚀模型,预测了激光辐照下碳纤维增强复合材料的瞬态温度场和表面烧蚀速率,计算结果与文献试验数据一致。最后,通过修正烧蚀模型分析了高速气流剥蚀对激光辐照复合材料热效应的影响。  相似文献   

8.
纤维增强复合材料激光烧蚀效应的数值模拟   总被引:1,自引:0,他引:1  
考虑材料的热解、氧化、相变及辐射和内外对流换热等物理过程,给出了激光烧蚀纤维增强复合材料的物理模型及数学模型。以碳纤维/环氧树脂复合材料为例,编程计算了材料的激光烧蚀过程,计算结果与实验结果符合得较好。计算结果表明:考虑复合材料的内对流时得到的结果更准确;较强功率密度激光辐照时,氧化对烧蚀的贡献可以忽略;功率密度一定时,烧蚀质量随时间近似为线性变化,功率密度越高,烧蚀效率越高。以辐照结束时背表面温度及烧蚀质量为目标物理量,对烧蚀过程做了参数敏感性分析,结果表明:热容及热导率对背表面温度的影响较大;树脂含量对烧蚀质量的影响较大,但其相对敏感度随激光功率密度增加而下降;激光功率密度超过1 kW/cm2时,辐射系数对烧蚀质量影响较大,但其相对敏感度随激光功率密度增加而下降。  相似文献   

9.
Experiment study of powder flow feed behavior of laser solid forming   总被引:1,自引:0,他引:1  
A photographic system for the powder feed process of laser solid forming (LSF) was developed using a high speed camera, and the powder feed behaviors (the particle speed and the powder flow concentration) were described based on the powder flow images. The influences of the powder feed parameters and the distance below the nozzle exit plane on the powder feed behaviors were discussed, and the influences of the powder feed behaviors on the deposited layer quality were also investigated. It can be seen that the smooth finish of the deposited layer surface was improved remarkably by increasing the particle speed, and the deposited layer height decreases with the increase of the particle speed. It can also be found that the variation of the deposited layer height with the increase of the distance between the deposited surface and the nozzle exit plane is similar to that of the powder mass concentrations on the vertical symmetry axis.  相似文献   

10.
11.
The thermal state of a translucent selectively absorbing medium was studied by the methods of numerical simulation at different values of the optical properties of boundaries and heat transfer from the left surface in approximation of one-phase Stefan problem. The temperature fields and densities of resultant radiation fluxes as well as the thermal state of the left boundary and dynamics of layer reduction in the melting process were analyzed. The processes of phase transition in a flat layer of selective and gray absorbing media and emitting media were compared, and their fundamental differences were shown.  相似文献   

12.
基于非傅里叶热传导方程,采用复变函数法和镜像法,研究了含双圆柱亚表面缺陷板条材料热波散射的温度场,并给出了热波散射温度场的解析解。分析了入射波波数、热扩散长度、缺陷的埋藏深度以及板条材料的厚度等对板条表面温度分布的影响。温度波由调制光束在材料表面激发,缺陷表面的边界条件为绝热。该分析方法和数值结果可为工程材料结构的传热分析、热波成像和材料内部缺陷评估,以及热物理反问题研究提供参考。  相似文献   

13.
In this paper, the spectral volume method is extended to the two-dimensional Euler equations with curved boundaries. It is well-known that high-order methods can achieve higher accuracy on coarser meshes than low-order methods. In order to realize the advantage of the high-order spectral volume method over the low order finite volume method, it is critical that solid wall boundaries be represented with high-order polynomials compatible with the order of the interpolation for the state variables. Otherwise, numerical errors generated by the low-order boundary representation may overwhelm any potential accuracy gains offered by high-order methods. Therefore, more general types of spectral volumes (or elements) with curved edges are used near solid walls to approximate the boundaries with high fidelity. The importance of this high-order boundary representation is demonstrated with several well-know inviscid flow test cases, and through comparisons with a second-order finite volume method.  相似文献   

14.
This paper presents a 3D transient numerical approach for modeling the multilayer laser solid freeform fabrication (LSFF) process. Using this modeling approach, the geometry of the deposited material as well as temperature and thermal stress fields across the process domain can be predicted in a dynamic fashion. In the proposed method, coupled thermal and stress domains are numerically obtained assuming a decoupled interaction between the laser beam and powder stream. To predict the time-dependent geometry of the deposited material, once the melt pool boundary is obtained, the process domain is discretized in a cross-sectional fashion based on the powder feed rate, elapsed time, and intersection of the melt pool and powder stream area on the workpiece. Layers of additive material are then added onto the non-planar domain. Main process parameters affected by a multilayer deposition due to the formation of non-planar surfaces, such as powder catchment, are incorporated into the modeling approach to enhance the accuracy of the results. To demonstrate the proposed algorithm, fabrication of a four-layer thin wall of AISI 304 L stainless steel on a workpiece with the same material is modeled. The geometry of the wall, temperature, and stress fields across the modeling domain are dynamically predicted throughout the process. The model is used to investigate the effect of preheating and clamping the workpiece to the positioning table. Results show that preheating improves the process by reducing the thermal stresses as well as the settling time for the formation of a steady-state melt pool in the first layer. In addition, clamping the workpiece can also decrease thermal stresses at its critical locations (i.e. deposition region). In terms of geometrical aspects, the results show that the temperature and the thickness of the deposited layers increase at the end-points of layers 2–4. The reliability and the accuracy of the model are experimentally verified.  相似文献   

15.
We present a novel method for rapid and flexible laser marking and engraving of tilted, curved and freeform work-piece surfaces. The method is based on integrating a three-dimensional (3D) laser measurement system into a 3D laser marking system. We use the same laser source and optics for measurement and processing with a minimum of additional hardware components. A low power CW laser regime is used to measure the 3D shape of a work-piece surface while a high-peak power-pulsed laser regime is used for processing. The acquired 3D surface data are used to determine the 3D trajectory of the processing beam focus. Neither the 3D shape of the work-piece nor its orientation needs to be known in advance as long as the processed surface lies within the working range of the 3D laser processing system. This eliminates the need for exact work-piece positioning before processing and substantially improves processing flexibility (allowing, e.g. variations in work-piece shape or/and orientation from mark to mark). This paper discusses key issues concerning an implementation of the method and presents typical examples of markings and engravings, which demonstrate the advantages of the method with respect to the existing industrial 2D and 3D laser marking and engraving methods. The method can also be applied to flexible laser structuring and microprocessing of curved surfaces.  相似文献   

16.
A method is presented for representing curved boundaries for the solution of the Navier–Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel “cell-linking” method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow.  相似文献   

17.
In this paper, a new technology of direct and rapid thick coatings fabrication with hybrid plasma-laser deposition manufacturing (PLDM) technology is advanced which is also suitable for functional prototyping and tooling applications. It emphasizes on the influence of laser to the microstructure of coatings and physical properties of surface layers. Unlike the direct rapid plasma deposition manufacturing (PDM), in hybrid plasma-laser deposition manufacturing, the laser beam enters into plasma arc beam and focuses on the molten pool as assisting heat energy. A 280 W pulsed Nd:YAG (yttrium-aluminum garnet) laser machine is used to inspect the effect. The experimental results show that the laser beam could improve the surface state; the elements distribution of coatings deposited by PLDM was even; the physical properties of surface coatings fabricated with PLDM were better than that deposited by PDM.  相似文献   

18.
19.
Hydrodynamic instabilities are usually investigated in confined geometries where the resulting spatiotemporal pattern is constrained by the boundary conditions. Here we study the Faraday instability in domains with flexible boundaries. This is implemented by triggering this instability in floating fluid drops. An interaction of Faraday waves with the shape of the drop is observed, the radiation pressure of the waves exerting a force on the surface tension held boundaries. Two regimes are observed. In the first one there is a coadaptation of the wave pattern with the shape of the domain so that a steady configuration is reached. In the second one the radiation pressure dominates and no steady regime is reached. The drop stretches and ultimately breaks into smaller domains that have a complex dynamics including spontaneous propagation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号