首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A mathematical model is proposed for the process of modifying the metal surface layer by refractory nano-size particles with the aid of the pulse laser radiation, which accounts for the surface tension dependence on the presence of surface-active substance in the melt. Numerical modeling has been carried out, from the results of which the influence of the surface -active admixture on the character of forming flows, distribution of particles of the modifying substance in the metal, and the melt crystallization process have been estimated.  相似文献   

2.
Direct laser surface micro/nanopatterning by using Contact Particle Lens Array (CPLA) has been widely utilized. The method involves laser scanning of a monolayer of transparent particles arranged on the substrate to be patterned. Despite the different techniques available for CPLA deposition; the particles monolayer can only be formed on hydrophilic surfaces, which restrict the range of substrates that could be patterned by this method. In this study, a technique for patterning of hydrophobic surfaces by using CPLA has been proposed. In the proposed technique, monolayer of CPLA is formed on a hydrophilic substrate and then transported to a hydrophobic substrate by using a flexible sticky plastic. The transported CPLA is then scanned by a laser for patterning the hydrophobic substrate. The plastic pre-selected for this work was transparent to the laser. Experimental investigations were carried out to generate bumps and bowl shaped patterns using transported particles. Features smaller than the diffraction limit have been generated. The optical near field and associated temperatures around the particles were numerically simulated with a coupled electromagnetic and thermal modelling technique.  相似文献   

3.
To investigate the influencing rules of the variations of powder and laser defocusing distance on surface quality and obtain the smooth surface of parts in laser direct metal deposition, the thin-walled metal parts were fabricated under three different powder defocusing distances and three different laser defocusing distances conditions. The experimental results show that a high surface quality can be obtained with the powder focussed below the substrate and laser focussed above the substrate process, and the variation in which the powder focus moves from above to below the melt pool plays a leading role and the variation in which the laser focus moves from above to below the melt pool plays a supplementary role in the influence on the surface quality. To explain the experimental results, a simple model of the track height is established.  相似文献   

4.
A physical and mathematical model has been proposed for computing the thermal state and shape of the individual deposited track at the laser powder cladding. A three-dimensional statement of the two-phase problem of Stefan type with curved moving boundaries is considered. One of the boundaries is the melting-crystallization boundary, and the other is the boundary of the deposited layer, where the conservation laws are written from the condition of the inflow of the additional mass and energy. To describe the track shape the equation of kinematic compatibility of the points of a surface is used, the motion of which occurs at the expense of the mass of powder particles supplied to the radiation spot. An explicit finite difference scheme on a rectangular nonuniform grid is used for numerical solution of equations. The computations are carried out by through computation without an explicit identification of curved boundaries by using a modification of the immersed boundary method. The computational results are presented for the thermal state and the shape of the surface of the forming individual track depending on physical parameters: the substrate initial temperature, laser radiation intensity, scanning speed, powder feeding rate, etc.  相似文献   

5.
Heat transfer modelling and stability analysis of selective laser melting   总被引:1,自引:0,他引:1  
The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the “balling” effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The “balling” effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate.  相似文献   

6.
Ultraviolet laser removal of small metallic particles from silicon wafers   总被引:1,自引:0,他引:1  
Laser removal of small 1 μm sized copper, gold and tungsten particles from silicon wafer surfaces was carried out using ultraviolet radiation at 266 nm generated by Nd:YAG harmonic generation. Successful removal of both copper and gold particles from the surface was achieved whereas tungsten particles proved to be difficult to remove. The cleaning efficiency was increased with an increase of laser fluence. The optimum processing window for safe cleaning of the surface without any substrate damage was determined by measuring the damage threshold laser fluence on the silicon substrate and the required fluence for complete removal of the particles. The different cleaning efficiencies with particle type are discussed by considering the adhesion force of the particle on the surface and the laser-induced cleaning force for the three different particles.  相似文献   

7.
A three-dimensional model for laser cleaning of spherical, transparent particles on low-absorbing substrates has been developed. It takes into account near-field focussing of the laser radiation by the particles. The intensity distribution under a particle was found using Mie theory together with the geometrical optics approximation. This permits the estimation of the beam width at the substrate surface and the focal distance of the radiation coming from the spherical particle. These parameters are used to find the distribution of intensity within the low-absorbing substrate from the formula for a focussed Gaussian beam. This is in contrast with most other models of laser cleaning, which assume that all absorption occurs at the surface of the substrate. The energy criterion was used to calculate the threshold fluence. The model predicts threshold fluences of the order of 103 J/cm2 for silica spheres having a diameter of the order of a micron on silica substrates, assuming adhesion by van der Waals force. As this is well above the damage threshold for silica, it effectively predicts that laser cleaning of silica spheres from silica will be impossible. For glass slides the threshold fluence is predicted to be a factor of 10-4 times smaller than that for silica slides (about 0.1 J/cm2). This is due to the much higher absorption of glass compared to that of silica at 248 nm. PACS 42.62.Cf; 81.65.Cf  相似文献   

8.
Laser removal of small copper particles from silicon wafer surfaces was carried out using Nd:YAG laser radiation from near-infrared (1064 nm) through visible (532 nm) to ultraviolet (266 nm). It has been found that both 266 nm and 532 nm are successful in removing the particles from the surface whereas 1064 nm was shown to be ineffective in the removal of particles. The damage-threshold laser fluence at 266 nm was much higher than other wavelengths which provides a much wider regime for safe cleaning of the surface without causing any substrate damage. The cleaning efficiency was increased with a shorter wavelength. The effect of laser wavelength in the removal process is discussed by considering the adhesion force of the particle on the surface and the laser-induced cleaning forces for the three wavelengths. Received: 31 May 2000 / Accepted: 14 July 2000 / Published online: 20 June 2001  相似文献   

9.
The problem of extreme focusing of an optical beam into the spatial region with wavelength dimensions is considered with the use of the special features of radiation interaction with isolated spherical particles. Results of numerical computations of the optical field intensity at the surface of silver particles of different radii upon exposure to laser radiation with different wavelengths are presented. It is demonstrated that the relative intensity of the plasmon optical field on the nanoparticle surface increases and the field focusing region decreases with increasing particle radius. Results of numerical computations illustrating the influence of the shell of composite nanoparticles comprising a dielectric core and a metal shell on the optical field intensity in the vicinity of the particle are presented. The problem of local optical foci of a transparent microparticle (photonic nanojets) is investigated. It is established that variation of the micron particle size, its optical properties, and laser radiation parameters allows the amplitude and spatial characteristics of the photonic nanojet region to be controlled efficiently.  相似文献   

10.
Instead of the continuous powder delivery method using a powder feeder for thick layer laser cladding, pre-pasting of the alloying powder on the substrate is a widely used method to supply the coating powders into the melt pool for LSA. A method to monitor the process of laser surface alloying based on the infrared emission from the melt pool using infrared photodiodes was developed. The technique is solely aimed at the process of laser surface alloying using pre-paste metal powder on the substrate surface prior to laser melting. This monitoring technique is able to distinguish the existence or the absence of the pre-paste powder and the consistency of the laser surface alloying process. The technique is of low cost and is simple to implement into the process.  相似文献   

11.
Acoustic expressions have been derived for the thermal expansion of substrate surfaces due to irradiation by an exponential laser pulse. The result of acoustic effects on three substrates (silicon, glass and silica) with different absorptions has been calculated.It has been shown that for substrates having relatively low absorptions, like silica and glass, acoustic considerations substantially reduce thermal expansion of the substrate caused by irradiation by nanosecond laser pulses relative to a quasi-static expansion model. In particular, the expansion of the substrate occurs over a much longer time frame than when the quasi-static approximation holds. Consequently, acceleration of the substrate surface is greatly reduced and laser cleaning threshold fluences for particle removal are increased.The predictions of the model of Arnold et al. when developed for acoustic considerations give reasonable agreement with experimentally found threshold fluences for alumina particles on silica and glass substrates although it underestimates the ratio of the threshold cleaning fluences of silica and glass. This could be due to the model underestimating the contribution of surface expansion to the laser cleaning process. The influence of multiple reflections in the substrate and departure from one dimensionality in the heat conduction on the threshold fluence was found to be insignificant. Thermal contact between the particle and the substrate was also found to have little effect on laser cleaning threshold fluences. Another mechanism that may enhance surface expansion is the 3D focussing of radiation by the particles. PACS 42.62.Cf; 81.65.Cf; 42.55.Lt  相似文献   

12.
 用表面纹理化的热模型,分析了固体表面的熔化和重固化的物理过程,计算了在纹理化过程中的表面温度,穿透深度,熔化深度,相面移动速度等物理量,提出了Rayleight-Taylor不稳定性形成周期化结构的机理。  相似文献   

13.
The results of numerical modeling of diffuse reflection and transmission by layers of oriented spheroidal particles (whose rotation axes are normal to the layer surface) with oblique incidence of a parallel beam of radiation on the layer are presented. To describe the properties of particles in the elementary act of scattering, the Rayleigh-Gans approximation is used. To describe the propagation of radiation in the layer, the radiative transfer equation in which the characteristics of the medium depend on the direction of radiation propagation is used. The influence of Fresnel reflection at the layer boundaries and the influence of the substrate are taken into account. Calculations of the luminance factors at the layer boundaries over a wide range of characteristics of the medium and layer thicknesses have been made.  相似文献   

14.
高能激光的发展对光学元件的抗损伤能力要求越来越高,其中光学薄膜是最薄弱的环节之一。实验研究了激光的聚焦位置对石英基片上HfO2/SiO2减反射薄膜损伤形貌的影响,研究发现:激光等离子体的高压冲击波对薄膜产生强烈的冲击剥离效应,其压强随膨胀半径的增加而迅速减小。激光等离子体光谱的辐射波长小于入射激光波长,这会增强薄膜对辐射光能量的吸收;位于深紫外波段、能量大于HfO2薄膜带隙的光子能量,将被薄膜直接吸收,从而加剧薄膜的电离破坏。激光等离子体的辐射效应和冲击波效应的共同作用决定了薄膜的损伤形貌。当激光聚焦到薄膜表面时,冲击波压强极大会使薄膜发生大面积的电离去除,同时基底发生击穿;当两者距离大到一定距离时,冲击波只会使得中心处小面积薄膜发生剥离,基底未出现断裂。  相似文献   

15.
Multimode Nd:YAG pulse laser was applied to remove micron and submicron particles by vaporizing a thin paint film pre-coated on super-smooth optical substrate surface. By analyzing the poor absorption of the optical glass substrate to the irradiative Nd:YAG pulse laser, the removal mechanism of contaminated colloidal particles from the super-smooth surface through vaporization of a volatile solid film is described. A limit analysis was proposed to determine the lower and the upper threshold of laser fluence for cleaning the SiO2 contaminants from super-smooth K8 optical substrate. Relevant experiments on laser cleaning of micron-polishing particles from super-smooth K8 optical substrate confirmed the usefulness of this method in assisting the selection of effective cleaning fluence for accomplishing high cleanliness, which was in a range of 80–90% of the predicted upper threshold.  相似文献   

16.
Carbon nitride films were deposited using ablation of graphite target by second harmonic radiation of Nd:YAG laser in nitrogen atmosphere. To produce high hardness films, the deposited particles should have sufficient kinetic energy to provide their efficient diffusion on a substrate surface for formation of crystal structure. However, a shock wave is arisen in ambient gas as a consequence of laser plasma explosive formation. This shock wave reflected from the substrate interacts with plume particles produced by the first laser pulse and decreases their kinetic energy. This results in decrease of film crystallinity. To improve film quality, two successive laser pulses was proposed to be used. At adjusting time delay, the particles induced by the second pulse wilt serve as a piston, which will push forward both stopped particles ablated by the first pulse and arisen from chemical reactions in ambient gas. An X-ray photoelectron spectroscopy (XPS) analysis of deposited films has shown an increase of content of sp 3 carbon atoms corresponding to crystalline phase, if double-pulse configuration is employed. The luminescence of excited C2 and CN molecules in laser plume at different distances from the target was studied to optimize the delay between laser pulses.  相似文献   

17.
The problem of reconstructing the characteristics of disperse particles from measurements of scattered radiation is considered. To solve this problem, the neural network method, based on the approximation of the parameters of particles by a linear combination of the results of measurements, is used. The capabilities of the method are studied on the examples of the reconstruction of the radius and the refractive index of spherical particles from measurements (for example, in flow-type cytometers) of the luminance of radiation scattered by individual particles, as well as the reconstruction of the mean radius, the coefficient of variation, and the refractive index from measurements of the luminance of radiation scattered by an ensemble of particles. Errors in the reconstruction of the characteristics of disperse particles depending on the structure of the neural network and the parameters of particles are studied.  相似文献   

18.
We present experimental results on the introduction (laser implantation) of ferroelectric NaNO2 into artificial opal pores upon exposure of a thin powder layer of sodium nitrite applied on the artificial opal surface to radiation of the ultraviolet excimer laser. Reflection spectra of broadband radiation from the laser-implanted sample surface are compared with the reflection spectra of pure initial opals, artificial opals impregnated with a saturated aqueous solution of sodium nitrite and evaporated from solvent, and samples in which NaNO2 was directly introduced in the form of a melt.  相似文献   

19.
The results of the numerical analysis of heat- and mass-transfer processes at powder particles' motion in a gas flow and laser beam by light-propulsion force during the laser cladding and direct material deposition are presented. Under consideration were the stainless steel particles, the radiation power range of the CO2 laser were 1000, 3000 and 5000 W. Finally, the particles of 45 μm in diameter reach the maximum velocity of about 80, 220, 280 m/s. It is shown that as particles are heated by the laser up to the temperature approaching the boiling point, the particles' velocity in the light field by the vapor recoil pressure may increase significantly. The radius of the particles slightly varies due to the evaporation; the losses in the clad material mass are negligibly small. Comparisons of numerical results with known experimental data on light-propulsion acceleration of single particles (aluminum, aluminum oxide and graphite) under the influence of pulse laser radiation are also presented. Particle acceleration resulting from the laser evaporation depends on the particle diameter, powder material properties, focusing degree and attenuation laser beam intensity by the direction of its propagation.  相似文献   

20.
Crack formation in laser cladding of the hardfacing alloy Stellite 1 on AISI-SAE 4340 steel was prevented through locally preheating the substrate prior to the deposition process. Numerical analysis showed that the preheating process helps developing a relatively steadier melt temperature as well as decreasing the cooling rates and consequently the thermal stresses during the subsequent deposition process. Microstructural analysis revealed a thicker cross-section with smoother surface profile, more uniform surface hardness and even distribution of a dendritic morphology in the preheated sample. This confirmed the presence of a well-developed melt pool with a homogeneous composition at solidification. The microstructure of non-preheated sample was, however, considerably non-uniform consisting of macro-scale colonies of dendritic and lamellar (eutectic) structures. The experimental observations, as implied through the numerical results, showed that the preheated sample, in general, reveals more uniform structure and properties making it less prone to cracking during the deposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号