首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a new oxidative route, Ag(+)[Al(OR(F))(4)](-) (R(F)=C(CF(3))(3)) and metallic indium were sonicated in aromatic solvents, such as fluorobenzene (PhF), to give a precipitate of silver metal and highly soluble [In(PhF)(n)](+) salts (n=2, 3) with the weakly coordinating [Al(OR(F))(4)](-) anion in quantitative yield. The In(+) salt and the known analogous Ga(+)[Al(OR(F))(4)](-) were used to synthesize a series of homoleptic PR(3) phosphane complexes [M(PR(3))(n)](+), that is, the weakly PPh(3)-bridged [(Ph(3)P)(3)In-(PPh(3))-In(PPh(3))(3)](2+) that essentially contains two independent [In(PPh(3))(3)](+) cations or, with increasing bulk of the phosphane, the carbene-analogous [M(PtBu(3))(2)](+) (M=Ga, In) cations. The M(I)-P distances are 27 to 29 pm longer for indium, and thus considerably longer than the difference between their tabulated radii (18 pm). The structure, formation, and frontier orbitals of these complexes were investigated by calculations at the BP86/SV(P), B3LYP/def2-TZVPP, MP2/def2-TZVPP, and SCS-MP2/def2-TZVPP levels.  相似文献   

2.
We report herein the synthesis and full characterization of the donor-free Lewis superacids Al(OR(F))(3) with OR(F) = OC(CF(3))(3) (1) and OC(C(5)F(10))C(6)F(5) (2), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2-F(2)C(6)H(4), and SO(2), as well as the internal C-F activation pathway of 1 leading to Al(2)(F)(OR(F))(5) (4) and trimeric [FAl(OR(F))(2)](3) (5, OR(F) = OC(CF(3))(3)). Insights have been gained from NMR studies, single-crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl-Al(OR(F))(3)](-) anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

3.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

4.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

5.
While reinvestigating the published synthesis of OPI(3), it became evident from the experiments that phosphoryl triodide may only be formed as an intermediate and that the end products of the reaction of OPCl(3) with LiI are P(V) oxides, PI(3), I(2), and LiCl. This is also in agreement with MP2/TZVPP calculations, which assign Delta(r)H degrees (Delta(r)G degrees ) [Delta(r)G degrees in CHCl(3)] for the disproportionation of OPI(3) as -7 (-18) [-17 kJ mol(-1)] (assuming P(4)O(10) as the P(V) oxide). The first products of this reaction visible in a low-temperature in situ (31)P NMR experiment are P(2)I(4) and PI(3), as well as traces of a compound that may be OPCl(2)I. By contrast, it was possible to prepare and structurally characterize Lewis acid [A] stabilized [A]<--OPX(3) adducts, where [A] is Al(OR(F))(3) for X=Br and Al(OR(F))(2)(mu-F)Al(OR(F))(3) for X=I (R(F)=C(CF(3))(3)). These adducts are formed on decomposition of PX(4) (+)[Al(OR(F))(4)](-); high yields of Br(3)PO-->Al(OR(F))(3) (delta((31)P)=-65) were obtained, while I(3)PO-->Al(OR(F))(3) (delta((31)P)=-337) and I(3)PO-->Al(OR(F))(2)(mu-F)Al(OR(F))(3) (delta((31)P)=-332) are only formed as by-products. The main product of the room-temperature decomposition of PI(4) (+)[Al(OR(F))(4)](-) is PI(4) (+)[(R(F)O)(3)Al(mu-F)Al(OR(F))(3)](-), which was also characterized by X-ray crystallography and was independently prepared from Ag(+)[(R(F)O)(3)Al(mu-F)Al(OR(F))(3)](-), PI(3), and I(2).  相似文献   

6.
Sandwich-type supramolecular cation structures of (M(+))([12]crown-4)(2) complexes (M(+) = Li(+), Na(+), K(+), and Rb(+)) were introduced as countercations to the [Ni(dmit)(2)](-) anion, which bears an S = (1)/(2) spin, to form novel magnetic crystals (dmit(2-) = 2-thione-1,3-dithiole-4,5-dithiolate). The zigzag arrangement of Li(+)([12]crown-4)(2) cations in Li(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salt induced weak intermolecular interactions of [Ni(dmit)(2)](-) dimers, whose magnetic spins were isolated from each other. The molecular arrangements of cations and anions in M(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salts (M(+) = Na(+), K(+), and Rb(+)) were isostructural to each other. In the case of Na(+)([12]crown-4)(2)[Ni(dmit)(2)](-), the space group C2/m changed to C2/c with a lowering in temperature from 298 to 100 K. This structural change occurred at 222.5 K as a first-order phase transition. The space group C2/m (T = 298 K) in the salt K(+)([12]crown-4)(2)[Ni(dmit)(2)](-) also changed to C2/c (T = 100 K), which transition occurred at 270 K. Crystal structural analyses at 298 and 100 K revealed changes in both supramolecular cation conformation and [Ni(dmit)(2)](-) anion arrangements. The transition from C2/m to C2/c crystals generated a dipole moment in the Na(+)([12]crown-4)(2) and K(+)([12]crown-4)(2) structures, which were reconstructed to cancel the net dipole moment of the C2/c crystals. These cation transformations led to changes in intermolecular interactions between the [Ni(dmit)(2)](-) anions via structural rearrangements. The crystal structure of C2/c was stabilized in Rb(+)([12]crown-4)(2)[Ni(dmit)(2)](-) at 298 K. The [Ni(dmit)(2)](-) configuration in these salts with the C2/c space group was a one-dimensional uniform chain, which showed the temperature-dependent magnetic susceptibility of a one-dimensional linear Heisenberg antiferromagnetic chain.  相似文献   

7.
The CX3(+) salts [CCl(3)](+)[Al(OR(F))(4)](-)1, [CCl(3)](+)[(R(F)O)(3)Al-F-Al(OR(F))(3)](-)2, [CBr(3)](+)[Al(OR(F))(4)](-)3, [CBr(3)](+)[(R(F)O)(3)Al-F-Al(OR(F))(3)](-)4 (R(F) = C(CF(3))(3)) were prepared in 56 to 85% yield from CX(4) (X = Cl, Br) and the corresponding silver salts (weight balance, NMR, IR, X-ray structure of 1). The most convenient solvent for the preparation of 1 and 2 is SO(2)ClF but for 3 and 4 it is SO(2). The reactions are complete after about three days stirring at -30 to -40 °C. The salts are stable for weeks in solution at -40 °C and stable for a few hours at RT in the solid state. In SO(2)ClF (1, 2) or SO(2) (3, 4) solution they decompose slowly at -20 °C and within several hours at RT; in general the CBr3(+) salts are more stable than the CCl3(+) homologues. The decomposition products were assigned as CCl(3)F and primarily CBr(2)F(2) (which likely forms as a Lewis acid induced disproportionation product of the initial CBr(3)F). The C-X vibrations of the salts were found in the expected range and the assignments were made based on experimental and calculated data. The IR spectrum of a CBr3(+) salt is for the first time reported here.  相似文献   

8.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

9.
The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and M?ssbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.  相似文献   

10.
Bowl-shaped mono- and dianions are prepared by reduction of corannulene (C(20)H(10), 1) with sodium and potassium metals in the presence of [18]crown-6 ether. Single-crystal X-ray diffraction studies of two sodium salts, [Na(THF)(2)([18]crown-6)](+)[1(-)] (2a) and [Na([18]crown-6)](+)[1(-)] (2b), reveal the presence of naked corannulene monoanions 1(-) in both cases. In contrast, the potassium adduct, [K([18]crown-6)](+)[1(-)] (3), shows an η(2)-binding of the K(+) ion to the convex face of 1(-). For the first time, corannulene dianions have been isolated as salts with sodium, [Na(2)([18]crown-6)](2+)[1(2-)] (4a) and [Na(THF)(2)([18]crown-6)](+)[Na([18]crown-6)](+)[1(2-)] (4b), and potassium counterions, [K([18]crown-6)](2)(+)[1(2-)] (5). Their structural characterization reveals geometry perturbations upon addition of two electrons to a bowl-shaped polyarene. It also demonstrates η(5)- or η(6)-binding of metals to the curved carbon surface of 1(2-), depending on the crystallization conditions. Both mono- and doubly-charged corannulene bowls show the preferential exo binding of Na(+) and K(+) ions in all investigated compounds. Various types of C-H···π interactions are found in the crystals of 2-5. The UV/Vis, ESR, and (1)H NMR spectroscopic studies of 2-5 indicate different coordination environment of corannulene anions in solution, depending on the metal ion.  相似文献   

11.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

12.
A series of cationic, neutral, and anionic allylgallium complexes has been isolated and fully characterized. It includes neutral [Ga(η(1)-C(3)H(5))(3)(L)] (1, L = THF; 2, L = OPPh(3)), cationic [Ga(η(1)-C(3)H(5))(2)(THF)(2)](+)[A](-) (3, [A](-) = [B(C(6)F(5))(4)](-); 4, [A](-) = [B(C(6)H(3)Cl(2))(4)](-)), as well as anionic [Cat](+)[Ga(η(1)-C(3)H(5))(4)](-) (5, [Cat](+) = K(+); 6, [Cat](+) = [K(dibenzo-18-c-6](+); 7, [Cat](+) = [PPh(4)](+)). Binding modes of the allyl ligand in solution and in the solid state have been studied comparatively. Single crystal X-ray analyses revealed a four-coordinate neutral gallium center in 2, a five-coordinate cationic gallium center in 4 and [4·THF], and a four-coordinate anionic gallium center with a bridging μ(2)-η(1):η(2) coordination mode of the allyl ligand in 6. The reactivity of this series of allylgallium complexes toward benzophenone and N-heteroaromatics has been investigated. Counterion effects have also been studied. Reactions of 1 and 5 with isoquinoline revealed the first examples of organogallium complexes reacting under 1,2-insertion with pyridine derivatives.  相似文献   

13.
Sandwich-type hydrogen-bonded supramolecular dications (DAAz(2+))([18]crown-6)(2) and (DAAz(2+))(dicyclohexane[18]crown-6)(2) (DAAz(2+) = 4,4'-(phenylazophenyl)diammonium) were introduced into [Ni(dmit)(2)](-) anions via a diffusion method to form novel single crystals (DAAz(2+))([18]crown-6)(2)[Ni(dmit)(2)](2) (1) and (DAAz(2+))(dicyclohexane[18]crown-6)(2)[Ni(dmit)(2)](2) (2), respectively, which were characterized based on their crystal structures and magnetic susceptibilities. The molecular assembly structures and its physical properties were expanded in the use of a three component molecular network system. The two ammonium groups (-NH(3)(+)) of the DAAz(2+) dication formed N-H(+)-O hydrogen-bonding interactions with the oxygen atoms of [18]crown-6 and dicyclohexane[18]crown-6. In the case of crystal 1, an alternating π-stacking interaction was observed for the [Ni(dmit)(2)](-) anions, whereas orthogonal linear π-S interactions were detected for crystal 2. Temperature-dependent magnetic susceptibilities of crystals 1 and 2 followed the alternate Heisenberg antiferromagnetic chain (J = -15.8 K) and linear Heisenberg antiferromagnetic chain (J = -13.7 K) models, respectively.  相似文献   

14.
Dimeric rhodium(I) bis(carbonyl) chloride, [Rh(CO)(2)(mu-Cl)](2), is found to be a useful and convenient starting material for the syntheses of new cationic carbonyl complexes of both rhodium(I) and rhodium(III). Its reaction with the Lewis acids AlCl(3) or GaCl(3) produces in a CO atmosphere at room temperature the salts [Rh(CO)(4)][M(2)Cl(7)] (M = Al, Ga), which are characterized by Raman spectroscopy and single-crystal X-ray diffraction. Crystal data for [Rh(CO)(4)][Al(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.705(3), b = 9.800(2), c = 10.268(2) A; alpha = 76.52(2), beta = 76.05(2), gamma = 66.15(2) degrees; V = 856.7(5) A(3); Z = 2; T = 293 K; R(1) [I > 2sigma(I)] = 0.0524, wR(2) = 0.1586. Crystal data for [Rh(CO)(4)][Ga(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.649(1), b = 9.624(1), c = 10.133(1) A; alpha = 77.38(1), beta = 76.13(1), gamma = 65.61(1) degrees; V = 824.4(2) A(3); Z = 2; T = 143 K; R(1) [I > 2sigma(I)] = 0.0358, wR(2) = 0.0792. Structural parameters for the square planar cation [Rh(CO)(4)](+) are compared to those of isoelectronic [Pd(CO)(4)](2+) and of [Pt(CO)(4)](2+). Dissolution of [Rh(CO)(2)Cl](2) in HSO(3)F in a CO atmosphere allows formation of [Rh(CO)(4)](+)((solv)). Oxidation of [Rh(CO)(2)Cl](2) by S(2)O(6)F(2) in HSO(3)F results in the formation of ClOSO(2)F and two seemingly oligomeric Rh(III) carbonyl fluorosulfato intermediates, which are easily reduced by CO addition to [Rh(CO)(4)](+)((solv)). Controlled oxidation of this solution with S(2)O(6)F(2) produces fac-Rh(CO)(3)(SO(3)F)(3) in about 95% yield. This Rh(III) complex can be reduced by CO at 25 degrees C in anhydrous HF to give [Rh(CO)(4)](+)((solv)); addition of SbF(5) at -40 degrees C to the resulting solution allows isolation of [Rh(CO)(4)][Sb(2)F(11)], which is found to have a highly symmetrical (D(4)(h)()) [Sb(2)F(11)](-) anion. Oxidation of [Rh(CO)(2)Cl](2) in anhydrous HF by F(2), followed in a second step by carbonylation in the presence of SbF(5), is found to be a simple, straightforward route to pure [Rh(CO)(5)Cl][Sb(2)F(11)](2), which has previously been structurally characterized by us. All new complexes are characterized by vibrational and NMR spectroscopy. Assignment of the vibrational spectra and interpretation of the structural data are supported by DFT calculations.  相似文献   

15.
The title compound [2,6-Mes(2)C(2)H(3)](2)Ga(+)Li[Al(OCH(CF(3))(2))(4)](2)(-), 1, containing a linear two-coordinate gallium cation, has been obtained by metathesis reaction of [2,6-Mes(2)C(2)H(3)](2)GaCl with 2 equiv of Li[Al(OCH(CF(3))(2))(4)] in C(6)H(5)Cl solution at room temperature. Compound 1 has been characterized by (1)H, (13)C((1)H), (19)F, and (27)Al NMR spectroscopy and X-ray crystallography. Compound 1 consists of isolated [2,6-Mes(2)C(6)H(3)](2)Ga(+) cations and Li[Al(OCH(CF(3))(2))(4)](2)(-) anions. The C-Ga-C angle is 175.69(7) degrees, and the Ga-C distances are 1.9130(14) and 1.9145(16) A. The title compound is remarkably stable, is only a weak Lewis acid, and polymerizes cyclohexene oxide.  相似文献   

16.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

17.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

18.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

19.
Reactions of Pt(diimine)(tdt) (tdt =3,4-toluenedithiolate) with [M(2)(dppm)(2)(MeCN)(2)](2+) (M = Cu(I) or Ag(I), dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(tdt)(mu-SH)(dppm)(3)](ClO(4)) (1) and [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy) 2; 4,4'-dimethyl-2,2'-bipyridine (dmbpy) 3; phenanthroline (phen) 4, 5-bromophenanthroline (Brphen) 5) for M = Cu(I), but [PtAg(2)(tdt)(mu-SH)(dppm)(3)](SbF(6)) (6) and [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (diimine = bpy 7; dmbpy 8; phen 9; Brphen 10) for M = Ag(I). While the complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) result from linkage of Pt(diimine)(tdt) and [M(2)(dppm)(2)(MeCN)(2)](2+) by tdt sulfur donors, formation of [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5) is related to rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms by self-assembly. The formation of 1 and 6 is involved not only in dissociation and recombination of the metal components, but also in disruption of C-S bonds in the dithiolate (tdt). The dithiolate tdt adopts a chelating and bridging coordination mode in anti conformation for [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5), whereas there is the syn conformation for other complexes. Compounds 1 and 6 represent sparse examples of mu-SH-bridged heterotrinuclear Pt(II)M(I)(2) complexes, in which Pt(II)-M(I) centers are bridged by dppm and sulfur donors of tdt, whereas M(I)-M(I) (M = Cu for 1; Ag for 6) centers are linked by dppm and the mu-SH donor. The (31)P NMR spectra show typical platinum satellites (J(Pt-P) = 1450-1570 Hz) for 1-6 and Ag-P coupling for Pt(II)-Ag(I) (J(Ag-P) = 350-450 Hz) complexes 6-10. All of the complexes show intense emission in the solid state and in frozen glasses at 77 K. The complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) also afford emission in fluid acetonitrile solutions at room temperature. Solid-state emission lifetimes at room temperature are in the microsecond range. It is revealed that emission energies of the trinuclear heterometallic complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) exhibit a remarkable blue shift (0.10-0.35 eV) relative to those of the precursor compounds Pt(diimine)(tdt). The crystal structures of 1, 2, 4, 6, 8, and 9 were determined by X-ray crystallography.  相似文献   

20.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号