首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Paramagnetic Cu(HL)Cl2 · 0.25CHCl3 (I) and Cu(HL)C12 · 0.25CH2C12 (II), where HL is the optically active morpholino oxime obtained from the terpenoid caryophyllene, were synthesized. The crystals of Cu(HL)Cl2 · CHCl3 (III) were isolated. According to X-ray diffraction data, the crystals of III are composed of acentric mononuclear complex molecules Cu(HL)Cl2 and solvate molecules CHCl3. In the complex molecules, the Cu ion coordinates two N atoms of the bidentate chelating ligand HL and two C1 atoms at the vertices of a distorted tetrahedron. The translationally identical molecules of the complex combined by H-bonds form chains along the axis x.  相似文献   

2.
The reactions of equimolar amounts of trans-[ReOC13(PPh3)2] or trans-[Re(NPh)(PPh3)2Cl3] with a Schiff base formed by condensation of 2-hydroxy-4-methoxybenzaldehyde and ethanolamine (H2L) result in the formation of cis-[ReO(HL)PPh3Cl2] (1a) and trans-[Re(NPh)(HL)(PPh3)Cl2] (2b), respectively, in good yields. 1a and 2b have been characterized by a range of spectroscopic and analytical techniques. The X-ray crystal structures of 1a and 2b reveal that 1a is an octahedral cis-Cl,Cl oxorhenium(V) complex, while 2b is a trans-Cl,Cl phenylimidorhenium(V) complex. The complexes are weakly emissive at room temperature with quantum yields of 10?4. Density functional theory calculations of the electronic properties of the complexes were performed and are in agreement with the experimental results. The complexes display quasi-reversible Re(V)/Re(VI) redox couples in acetonitrile. There is reasonable agreement between the experimental and calculated redox potentials of 1a and 2b.  相似文献   

3.

An organic ligand 1-(1H-benzimidazol-1-ylmethyl)-1H-benzotriazole (bta) and two zinc complexes of the composition [Zn(bta)2Hal2] (Hal = Cl, Br) were synthesized. The crystal structure of the complex [Zn(bta)2Cl2] was determined and its features were discussed. According to X-ray diffraction data, the central atom has a tetrahedral environment composed of two nitrogen atoms from two ligand molecules coordinated in monodentate mode and two terminal chloride ions. Density functional theory (DFT) calculations of the ligand and complex [Zn(bta)2Cl2] were carried out. A study of the luminescence properties of the compounds synthesized suggests that excitation of the zinc complexes gives rise to a dual-band luminescence similar to that of the free ligand. Most probably, the emission originates from π—π* and π—π* intra-ligand transitions.

  相似文献   

4.
Diamagnetic Pd(II) complexes with the chiral ethylenediaminodioxime (H 2 L) and bis-α-thiooxime (H2L1), the derivatives of monoterpenoid (+)-3-carene, of the composition Pd2(H2L)Cl4(I), Pd2(H2L1)Cl4 (II), and the solvate Pd2(H2L1)Cl4·3DCl3 (III) were synthesized. The crystal structures of complex I and solvate III were determined from X-ray diffraction data. The structures consist of acentric binuclear molecules with the coordination cores PdN2Cl2 (in I) and PdNSCl2 (in III) in the form of the distorted squares. In complex I, each Pd atom coordinates two N atoms of the tetradentate bridge-cyclic ligand H2L and two Cl atoms; in compound III, one N and one S atom of the tetradentate bridge-cyclic ligand H2L1, and 2 Cl atoms. The CDCl3 molecules in compound III lie in the cavities formed by the molecules of complex II. In both structures, the PdCl2 fragments are in the trans-positions. The 1H NMR spectra indicate that the structures of complexes I, II in solutions are similar to the structures of compounds I, III in the solid state. Original Russian Text ? T.E. Kokina, L.I. Myachina, L.A. Glinskaya, A.V. Tkachev, R.F. Klevtsova, L.A. Sheludyakova, S.N. Bizyaev, A.M. Agafontsev, N.B. Gorshkov, S.V. Larionov, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 2, pp. 120–132.  相似文献   

5.
Tin coordination compounds [Sn(H2O)2Cl4] · 18C6 (I) and [Sn(H2O)2Cl4] · 18C6 · 2H2O (II) were synthesized and identified by IR spectroscopy, CH analysis, and X-ray powder diffraction. The crystal structures of compounds I and II were determined. The crystals of I and II are orthorhombic; a = 16.871(1) ?, b = 7.7305(7) ?, c = 16.939(1) ?, Z = 4, space group Cmca for I; a = 14.206(2) ?, b = 20.376(3) ?, c = 8.319(1) A, Z = 4, space group Pna21 for II. The structural units of I and II are [Sn(H2O)2Cl4] · 18C6 complex molecules (in II, also water molecules of crystallization). The coordinated water molecules in I are trans and those in II are cis to each other. The structural units in the crystals of I and II are combined only by hydrogen bonds between water molecules and the crown-ether oxygen atoms with the formation of the chain structure. Complex I was tested as the precursor of tin dioxide in a chemical vapor deposition (CVD) process. The morphology of the obtained film was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and the composition was studied by laser mass spectrometry for elemental analysis.  相似文献   

6.
The first X-ray crystal structures of coordination compounds of OP[NC4H8O]3 phosphoric triamide (L) are investigated in Cl2(CH3)2Sn(trans-L)2 (1) and [Mn(H2O)4(trans-L)2]Cl2·2H2O (2) as models of molecular and salt complexes for Hirshfeld surface (HS)-based analysis. The crystal packing of 1 includes weak interactions, while in the salt complex 2, a 2-D aggregate, along the (001) plane, is mediated by normal O–H?Cl and O–H?O hydrogen bonds. In the Hirshfeld study, the crystal cohesions of 1 and 2 are recognized via H?H, O?H/H?O, and Cl?H/H?Cl contacts. Among these interactions, hydrogen bonds O–H?Cl occur in the salt structure of 2, as well as some weaker hydrogen interactions as C–H?O (1 and 2), C–H?Cl (1), and O–H?O (2). The full fingerprint plots have nearly symmetric shapes for two independent molecules of 1, while an asymmetric shape appears for the cationic component of 2. To extract more detailed information on close intermolecular contacts, the molecular surface of the previously reported structure L was also mapped. The structure 2 is the first monomeric octahedral Mn(II)–phosphoric triamide complex reported so far. Furthermore, the HS analysis of 2 is the first such study on a cation–anion complex structure including phosphoric triamide ligand.  相似文献   

7.
The chiral complexes [PdL1Cl2] (I) and [PdL2Cl2] (II) (where L1 and L2 are hydroxypyrazolylquinoline and pyrazolylquinoline, respectively, based on the monoterpenoid (+)-3-carene) were obtained and examined using X-ray diffraction. The crystal structures of complexes I and II are built from mononuclear acentric molecules. The Pd2+ ions coordinate two N atoms of the chelating bidentate ligand L1 or L2 and two Cl atoms. The coordination polyhedron Cl2N2 is a square distorted in a tetrahedral manner. In structure I, adjacent molecules are linked by intermolecular contacts and hydrogen bonds Cl···H-O, which gives rise to chains aligned with the axis x. In structure II, contacts that are substantially shorter than the van der Waals interactions were not detected.  相似文献   

8.
Two different coordination polymers are obtained from d10 metal ions [Zn(II) and Cd(II)] and N,N′-ethylenebisacetamide (EBA). {[Zn(EBA)1.5(NO3)]?·?(NO3)} n (1) is a 1-D coordination polymer assembled from zinc ions and EBA molecules acting as a bridging ligand. Cd(H2O)2Cl2(EBA) (2) is constructed from 1-D inorganic polymeric chains {Cd(OH2)2Cl2} n and uncoordinated N,N′-ethylenebisacetamide molecules. These chains are interconnected through hydrogen bonds resulting in a 3-D supramolecular network. The luminescent properties of the organic molecule EBA, as well as of the coordination polymers 1, and 2 have been investigated.  相似文献   

9.
The chlorination of an aqueous solution of [PtpnPy2Cl2]Cl2 affords the platinum(IV) dichloroamine complex [PtPy2(NCl2)2Cl2](I), as the major reaction product formed due to the complete destruction of the five-membered chelate ring. Complex I is obtained in the pure state from acetonitrile. In addition, the [PtPy(NH2-CH(CH3)-CH(CH3)-NH2)Cl3]Cl · 1/2 H2O complex (II) is isolated from the mother liquor upon chlorination. Complex I reacts rapidly with concentrated HCl to form the tetramine complex [PtPy2(NH3)2Cl2](CF3SO3)2 · 1/2 H2O(III). The X-ray diffraction study is carried out for complexes I, II, and III. Complex I crystallizes in the monoclinic crystal system: space group C2/c, a = 7.4529(4), b = 15.2143(9), c = 14.9965(8) Å, β = 99.866(1)°, V = 1675.3(2) Å3, Z = 4; R hkl = 0.040. The crystals of complex II are triclinic: space group P $ \bar 1 The chlorination of an aqueous solution of [PtpnPy2Cl2]Cl2 affords the platinum(IV) dichloroamine complex [PtPy2(NCl2)2Cl2](I), as the major reaction product formed due to the complete destruction of the five-membered chelate ring. Complex I is obtained in the pure state from acetonitrile. In addition, the [PtPy(NH2-CH(CH3)-CH(CH3)-NH2)Cl3]Cl · 1/2 H2O complex (II) is isolated from the mother liquor upon chlorination. Complex I reacts rapidly with concentrated HCl to form the tetramine complex [PtPy2(NH3)2Cl2](CF3SO3)2 · 1/2 H2O(III). The X-ray diffraction study is carried out for complexes I, II, and III. Complex I crystallizes in the monoclinic crystal system: space group C2/c, a = 7.4529(4), b = 15.2143(9), c = 14.9965(8) ?, β = 99.866(1)°, V = 1675.3(2) ?3, Z = 4; R hkl = 0.040. The crystals of complex II are triclinic: space group P , a = 8.163(2), b = 8.656(2), c = 10.638(2) ?, α = 78.30(3)°, β = 83.95(3)°, γ = 84.68(3)°, V = 730.0(3) ?3, Z = 2; R hkl = 0.026. The crystals of complex III are monoclinic: space group C2/c, a = 11.946(2), b = 19.624(4), c = 10.034(2) ?, β = 95.96(3)°, V = 2339.5(8) ?3, Z = 4; R hkl = 0.043. The IR spectra of all the compounds synthesized are studied. Original Russian Text ? I.B. Baranovskii, M.D. Surazhskaya, M.A. Golubnichaya, G.G. Aleksandrov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 12, pp. 2000–2007.  相似文献   

10.
Inclusion compounds were formed between the host cyclotriveratrylene, H, (2,3,7,8,12,13-hexamethoxy-5,10-dihydro-15H-tribenzo[a,d,g]cyclononene) and the guests carbon tetrachloride, 1,1,1-trichloroethane, 1,1,1-trichloropropane and 1,1,2-trichloroethane. 1 (H·CCl4) has guest molecules in channels alternating with channels of host molecules. 2 (H·C2H3Cl3·C3H5Cl3) and 3 (H·2C2H3Cl3) exhibit a slightly different packing arrangement with one guest molecule in the host cavity and the rest of the guest molecules in channels. The stability and reactivity of these inclusion compounds were investigated.  相似文献   

11.
合成了Schiff碱配体3-乙酰吡啶缩邻氨基苯甲酰腙(L1)及4-乙酰吡啶缩邻氨基苯甲酰腙(L2),并分别与HgCl2进行了配位反应,得到2个配位聚合物{[Hg(L1)Cl2]·CH3OH}n (1)和[Hg(L2)Cl2]n (2),采用1H NMR、FTIR和元素分析等手段对化合物进行了表征,并对配合物的热稳定性进行了考察。通过X射线单晶体衍射技术测定了2个配合物的单晶结构,结构解析表明,配合物1属于三斜晶系,P1空间群,配合物2属于单斜晶系,P21/n空间群。  相似文献   

12.
The diamagnetic complexes [Pd(HL)Cl3](I) and PdLCl2(II), where L is 2-(3,5-dimethylpyrazol-1-yl)-4-methylquinoline, were obtained. According to X-ray diffraction data, the crystal structure of complex I consists of mononuclear acentric molecules. The coordination polygon PdNCl3 is a distorted square (trapezium) made up of the pyrazole N atom of the monodentate ligand (cation HL+) and three Cl atoms. Complex II seems to contain the square polygon PdN2Cl2.  相似文献   

13.
Nucleophilic substitution of Pd(RaaiR′)Cl2 [RaaiR′=1-alkyl-2-(arylazo)imidazole, p-R—C6H4— N=N—C3H2NN-1-R′; where R= H(a)/Me(b)/Cl(c) and R′ = Et(1)/Bz(2)] with adenine (A) in MeCN–water (1:1) at 298 K, to form [Pd(A)2]Cl2, has been studied spectrophotometrically under pseudo-first-order conditions and the analyses support a nucleophilic association path. The reaction follows the rate law, rate = {a+k [A] 02[Pd(RaaiR′)Cl2]: first-order in Pd(RaaiR′)Cl2 and second-order in A. The rate increases as follows: Pd(RaaiEt)Cl2(1) < Pd(RaaiBz)Cl2(2) and Pd(MeaaiR′)Cl2(b) < Pd(HaaiR′)Cl2(a) < Pd(ClaaiR′)Cl2(c). External addition of Cl (LiCl) suppresses the rate (rate 1/[Cl]). The activation parameters, H0 and S0 of the reactions were calculated from the Eyring plot and support the proposed mechanism.  相似文献   

14.
The reaction between tridentate NNO donor hydrazone ligands, (E)-2-cyano-N′-(phenyl(pyridin-2-yl)methylene)acetohydrazide (HL1) and (E)-2-cyano-N′-(1-(pyridin-2-yl)ethylidene)acetohydrazide (HL2), with MnCl2·4H2O in methanol resulted in [Mn(HL1)Cl2(CH3OH)] (1) and [Mn(HL2)Cl2(CH3OH)] (2). Molecular structures of the complexes were determined by single-crystal X-ray diffraction. All of the investigated compounds were further characterized by elemental analysis, FT-IR, TGA, and UV–Vis spectroscopy. These complexes were used as catalysts for olefin oxidation in the presence of tert-butylhydroperoxide (TBHP) as an oxidant. Under similar experimental conditions with equal manganese loading, the presence of [Mn(HL2)Cl2(CH3OH)] (2) resulted in higher conversion than [Mn(HL1)Cl2(CH3OH)] (1).  相似文献   

15.
Methyl 3-[(3,5-dimethylpyrazole-1-carbothioyl)-amino]propionate (L1) and the optically active derivative of natural monoterpene (+)-3-carene, (3bS,4aR)-3-[(3,4,4-trimethyl-3b,4,4a,5-tetrahydro-cyclopropa[3,4]cyclopenta[1,2-c]pyrazole-1-carbothioyl)-amino]propionate (L2), are synthesized. The paramagnetic CuL1Cl2 (I) and [Cu2L2 2Cl4] (II) complexes are obtained. According to the X-ray diffraction data, in mononuclear complex I, the L1 molecule performs a bidentate-cyclic function due to the coordination of the S atom of the C=S group and the N atom of the pyrazole cycle. The CuCl2NS coordination polyhedron is a distorted tetrahedron. Two molecules of complex I form an associate due to weak Cu···S interactions. Compound II is binuclear due to the bridging function of two Cl- ions, and analogous functions of the L1 and L2 ligands. The coordination polyhedron in complex II is CuCl3NS. The eff values for compounds I and II are equal to 1.81 and 1.79 B, respectively, and are constant in the interval from 78 to 300 K, indicating that noticeable exchange interactions between unpaired electrons of the Cu2+ ions are absent. The EPR spectra of the complexes in the solid phase are examined.  相似文献   

16.
合成了Schiff碱配体3-乙酰吡啶缩邻氨基苯甲酰腙(L1)及4-乙酰吡啶缩邻氨基苯甲酰腙(L2),并分别与Hg Cl2进行了配位反应,得到2个配位聚合物{[Hg(L1)Cl2]·CH3OH}n(1)和[Hg(L2)Cl2]n(2),采用1H NMR、FTIR和元素分析等手段对化合物进行了表征,并对配合物的热稳定性进行了考察。通过X射线单晶体衍射技术测定了2个配合物的单晶结构,结构解析表明,配合物1属于三斜晶系,P1空间群,配合物2属于单斜晶系,P21/n空间群。  相似文献   

17.
 The polymeric compound [Ru(cod)Cl2] x (cod = cyclooctadiene) reacts with 2 equivalents of tmeda (N,N,N′,N′-tetramethylethylenediamine) in refluxing MeOH to afford trans-[Ru(cod)(tmeda)(Cl)(H)] (1), which upon treatment with CHCl3 is readily converted to the dichloro complex trans-[Ru(cod)(tmeda)Cl2] (2). When [Ru(cod)Cl2] x is reacted with tmeda under an atmosphere of H2 (3 bar), the bis-tmeda complex trans-[Ru(tmeda)2Cl2] (3) is obtained in 80% yield. DFT calculations revealed that 3 is by 52 kJ/mol more stable than the corresponding cis isomer. Attempts to prepare the coordinatively unsaturated complex [Ru(tmeda)2Cl]+ by reacting 1 with TICF3SO3 were unsuccessful. According to DFT calculations, however, such a complex should be stable and, interestingly, should adopt a square pyramidal rather than a trigonal bipyramidal structure. If halide abstraction of 3 is performed in the presence of terminal alkynes HC*CR (R*t-Bu, n-Bu), the cationic vinylidene complexes [Ru(tmeda)2(Cl)(*C*CHR)]+ (4a,b) are obtained.  相似文献   

18.
Reaction of equimolar trans-[Re(NPh)(PPh3)2Cl3] with H2L, a 1?:?1 Schiff-base condensate of salicylaldehyde and ethanolamine, in chloroform gives trans-[Re(NPh)(HL)(PPh3)Cl2] (1a) in good yield. 1a has been characterized by C, H, and N microanalyses, FTIR and UV–vis spectra. The X-ray crystal structure of 1a reveals that it is an octahedral trans-Cl,Cl phenylimidorhenium(V) complex. The rhenium center has an ‘N2OCl2P’ coordination sphere. 1a crystallizes in the monoclinic space group P21/c with a = 11.2391(5), b = 16.4848(7), c = 16.3761(8) Å, V = 3034.0(2) Å3 and Z = 4. The electrochemical aspects of 1a have been studied. Electrochemical studies of 1a in dichloromethane show a quasi-reversible Re(V) to Re(VI) oxidation at 1.128 V versus Ag/AgCl. This redox potential reasonably matches the calculated redox potential, 1.186 V versus Ag/AgCl. Geometry optimization of the trans-Cl,Cl 1a vis-à-vis its cis analog, cis-Cl,Cl 1b, have been performed at the level of density functional theory (DFT). It is revealed that 1a is more stable than 1b by 21.6 kcal per mole of energy in the gas phase.  相似文献   

19.
Reactions of asymmetric ligand N-phenylacetyl picoloylhydrazide (HL) and copper(II) acetate/chloride give two complexes CuL2 (1) and Cu2Cl2L2 (2). The coordination geometries of Cu(II) in 1 and 2 are a severely distorted octahedron and a distorted square pyramid, respectively. The binuclear copper complex 2 contains a centrosymmetric Cu2(μ-Cl)2 core. Individual molecules of 1 and 2 further self-assemble through non-covalent intermolecular bonds in the solid state to form extended 2-D polymers. The magnetic properties, IR, EA, and solid-state photoluminescence properties of the title complexes are presented.  相似文献   

20.
合成了双吡啶酰腙Schiff碱配体(L),并采用核磁共振氢谱、质谱、红外光谱和元素分析等手段对其结构进行了表征。进一步采用溶剂挥发法合成了2个配合物{[Cd(L)_2Cl_2]·2DMF·6H_2O}n (1)和[Hg(L)Cl_2]n (2)。通过X射线单晶衍射技术测定了配体及2个配合物的单晶结构,并对配合物的热稳定性及其在常温下对甲醇蒸气的吸附进行了考察。实验结果表明,2个配合物均为1D配位聚合物,配合物1对甲醇蒸气有较好的吸附能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号