首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The commonly used Zn(2+) sensors 6-methoxy-8-p-toluenesulfonamidoquinoline (TSQ) and Zinquin have been shown to image zinc proteins as a result of the formation of sensor-zinc-protein ternary adducts not Zn(TSQ)(2) or Zn(Zinquin)(2) complexes. The powerful, cell-permeant chelating agent N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) is also used in conjunction with these and other Zn(2+) sensors to validate that the observed fluorescence enhancement seen with the sensors depends on intracellular interaction with Zn(2+). We demonstrated that the kinetics of the reaction of TPEN with cells pretreated with TSQ or Zinquin was not consistent with its reaction with Zn(TSQ)(2) or Zn(Zinquin)(2). Instead, TPEN and other chelating agents extract between 25 and 35% of the Zn(2+) bound to the proteome, including zinc(2+) from zinc metallothionein, and thereby quench some, but not all, of the sensor-zinc-protein fluorescence. Another mechanism in which TPEN exchanges with TSQ or Zinquin to form TPEN-zinc-protein adducts found support in the reactions of TPEN with Zinquin-zinc-alcohol dehydrogenase. TPEN also removed one of the two Zn(2+) ions per monomer from zinc-alcohol dehydrogenase and zinc-alkaline phosphatase, consistent with its ligand substitution reactivity with the zinc proteome.  相似文献   

2.
Zn(2+) is a necessary cofactor for thousands of mammalian proteins. Research has suggested that transient fluxes of cellular Zn(2+) are also involved in processes such as apoptosis. Observations of Zn(2+) trafficking have been collected using Zn(2+) responsive fluorescent dyes. A commonly used Zn(2+) fluorophore is 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ). The chemical species responsible for TSQ's observed fluorescence in resting or activated cells have not been characterized. Parallel fluorescence microscopy and spectrofluorometry of LLC-PK(1) cells incubated with TSQ demonstrated punctate staining that concentrated around the nucleus and was characterized by an emission maximum near 470 nm. Addition of cell permeable Zn-pyrithione resulted in greatly increased, diffuse fluorescence that shifted the emission peak to 490 nm, indicative of the formation of Zn(TSQ)(2). TPEN (N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine), a cell permeant Zn(2+) chelator, largely quenched TSQ fluorescence returning the residual fluorescence to the 470 nm emission maximum. Gel filtration chromatography of cell supernatant from LLC-PK(1) cells treated with TSQ revealed that TSQ fluorescence (470 nm emission) eluted with the proteome fractions. Similarly, addition of TSQ to proteome prior to chromatography resulted in 470 nm fluorescence emission that was not observed in smaller molecular weight fractions. It is hypothesized that Zn-TSQ fluorescence, blue-shifted from the 490 nm emission maximum of Zn(TSQ)(2), results from ternary complex, TSQ-Zn-protein formation. As an example, Zn-carbonic anhydrase formed a ternary adduct with TSQ characterized by a fluorescence emission maximum of 470 nm and a dissociation constant of 1.55 × 10(-7) M. Quantification of TSQ-Zn-proteome fluorescence indicated that approximately 8% of cellular Zn(2+) was imaged by TSQ. These results were generalized to other cell types and model Zn-proteins.  相似文献   

3.
A potentiometric study of the coordination of the fluorophore, 2-methyl-8-(4-toluenesulfonamido)-6-quinolyloxyacetic acid, (1)LH(2) (the intracellular Zn(2+) probe, Zinquin A) in its deprotonated form, (1)L(2)(-), in Zn(2+) ternary complexes, [Zn(n)L(1)L](n) (where n is the charge of (n)L) at 298.2 K in 50% aqueous ethanol (v/v) and I = 0.10 (NaClO(4)), shows that the formation of [Zn(n)L(1)L](n) from [Zn(n)L]((2+)(n)(+) is characterized by log(K(5)/dm(3) mol(-1)) = 8.23 +/- 0.05, 4.36 +/- 0.18, 8.45 +/- 0.10, 10.00 +/- 0.06, 11.53 +/- 0.06 and 5.92 +/- 0.15, respectively, where (n)L = (2)L - (6)L and (7)L(3-) are 1,4,7,10-tetraazacyclododecane, 1,4,8,11-tetraazacyclotetradecane, 1,4,7-triazacyclononane, 1,5,9-triazacyclododecane, tris(2-aminoethyl)amine and nitrilotriacetate, respectively, and K(5) is the stepwise complexation constant. Dissociation of a hydroxo proton from triethanolamine, (8)L, occurs in the formation of [Zn(8)LH(-1)](+) that subsequently forms [Zn(8)LH(-1)(1)L](-) for which log(K(5)/dm(3) mol(-1)) = 9.87 +/- 0.08. The variation of K(5) and the 5-fold variation of quantum yield of (1)L(2)(-) as its coordination environment changes in Zn(2+) ternary complexes are discussed with reference to the use of (1)L(2-) in the detection of intracellular Zn(2+).  相似文献   

4.
A novel cell-impermeable zinc sensor was synthesized by incorporating poly(ethylene glycol)(PEG) to N-(8-quinolyl)-p-aminobenzenesulfonamide (HQAS) group.The polymeric zinc sensor combines both valuable features of HQAS and PEG.The HQAS of the sensor has the similar functions to TSQ,and exhibits a good fluorescence response to Zn2+ but poor fluorescence responses to other metal ions.The PEG chain can prevent the sensor to permeate healthy cell membrane.The stained experiments with the yeast cells as model showed that the sensor cannot stain the healthy yeast cells,but only the damaged or died yeast cells. These results indicated the novel zinc probe was a typical cell-impermeable zinc sensor.  相似文献   

5.
The characteristics as a chemosensor of the compound 3-methyl-6,8-di(2-pyridyl)-[1,2,3]triazolo[5',1':6,1]pyrido[2,3-]pyrimidine (1) have been analyzed. Interaction with Cu(2+) produces a quenching of the fluorescence, while interaction with Zn(2+) leads to a quenching of the fluorescence followed by a bathochromic shift. The crystal structure of the Zn(1)(H(2)O)(3)(ClO(4))(2) x H(2)O complex shows the coordination of Zn(2+) through the terpyridine moiety. The octahedral site is completed by three water molecules. Interactions of the Zn(2+) complex with the anions sulfate, nitrate, nitrite, and dihydrogenphosphate in ethanol produce hypsochromic shifts and restoration of the fluorescence whose magnitude depends on the anion involved. The maximum interaction is observed for H(2)PO(4)(-). Interactions of the Zn(2+) complex with the amino acids l-aspartate and l-glutamate have also been explored showing a higher interaction with l-aspartate.  相似文献   

6.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

7.
The reactivity of the paramagnetic iridium(II) complex [Ir(II)(ethene)(Me(3)tpa)](2+) (1) (Me(3)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective C--C bond formation, most likely through radical coupling of the Ir-carbenoid radical species [Ir(III){CH(.)(COOEt)}(MeCN)(Me(3)tpa)](2+) (7) and (the MeCN adduct of) 1, to give the tetracationic dinuclear complex [(MeCN)(Me(3)tpa)Ir(III){CH(COOEt)CH(2)CH(2)}Ir(III)(MeCN)(Me(3)tpa)](2+) (4). The analogous reaction with TMSDM leads to the mononuclear dicationic species [Ir(III){CH(2)(SiMe(3))}(MeCN)(Me(3)tpa)](2+) (11). This reaction probably involves a hydrogen-atom abstraction from TMSDM by the intermediate Ir-carbenoid radical species [Ir(III){CH(.)(SiMe(3))}(MeCN)(Me(3)tpa)](2+) (10). DFT calculations support pathways proceeding via these Ir-carbenoid radicals. The carbenoid-radical species are actually carbon-centered ligand radicals, with an electronic structure best described as one-electron-reduced Fischer-type carbenes. To our knowledge, this paper represents the first reactivity study of a mononuclear Ir(II) species towards diazo compounds.  相似文献   

8.
A water-soluble fluorescent sensor, 1, based on the "receptor-spacer-fluorophore" [2-(2'-aminophenyl)benzoxazole-amide-2-picolylamine] sensor platform, demonstrates the high sensitivity for Zn(2+) with a 25-fold fluorescence enhancement upon chelation to Zn(2+) and also exhibits high selectivity to Zn(2+) over other metal ions. X-ray crystal structure of Zn(2+) complex reveals that the amide oxygen (O2) cooperates with 2-picolylamine unit (N3, N4) as a receptor bind Zn(2+).  相似文献   

9.
A new Zn(2+) fluorescent chemosensor N'-(3,5-di-tert-butylsalicylidene)-2-hydroxybenzoylhydrazine (H(3)L(1)) and its complexes [Zn(HL(1))C(2)H(5)OH](∞) (1) and [Cu(HL(1))(H(2)O)]CH(3)OH (2) have been synthesized and characterized in terms of their crystal structures, absorption and emission spectra. H(3)L(1) displays high selectivity for Zn(2+) over Na(+), K(+), Mg(2+), Ca(2+) and other transition metal ions in Tris-HCl buffer solution (pH = 7.13, EtOH-H(2)O = 8?:?2 v/v). To obtain insight into the relation between the structure and selectivity, a similar ligand 3,5-di-tert-butylsalicylidene benzoylhydrazine (H(2)L(2)), which lacks the hydroxyl group substituent in salicyloyl hydrazide compared with H(3)L(1), and its complex [Zn(2)(HL(2))(2)(CH(3)COO)(2)(C(2)H(5)OH)] (3), [Co(L(2))(2)][Co(DMF)(4)(C(2)H(5)OH)(H(2)O)] (4), [Fe(HL(2))(2)]Cl·2CH(3)OH (5), have also been investigated as a reference. H(3)L(1) exhibits improved selectivity for Zn(2+) compared to H(2)L(2). The findings indicate that the hydroxyl group substituent exerts an effect on the spectroscopic properties, complex structures and selectivity of the fluorescent sensor.  相似文献   

10.
Catalysis of the beta-elimination reaction of N-[2-(4-pyridyl)ethyl]quinuclidinium (1) and N-[2-(2-pyridyl)ethyl]quinuclidinium (2) by Zn(2+) and Cd(2+) in OH(-)/H(2)O (pH = 5.20-6.35, 50 degrees C, and mu = 1 M KCl) has been studied. In the presence of Zn(2+), the elimination reactions of both isomers occur from the Zn(2+)-complexed substrates (C). The equilibrium constants for the dissociation of the Zn(2+)-complexes are as follows: K(d) = 0.012 +/- 0.003 M (isomer 1) and K(d) = 0.065 +/- 0.020 M (isomer 2). The value of k(C)(H2O) for isomer 1 is 4.81 x 10(-6) s(-1). For isomer 2 both the rate constants for the "water" and OH(-)-induced reaction of the Zn(2+)-complexed substrate could be measured, despite the low concentration of OH(-) in the investigated reaction mixture [k(C)H2O)= 1.97 x 10(-6) s(-1) and k(C)(OH-)= 21.9 M(-1) s(-1), respectively]. The measured metal activating factor (MetAF), i.e., the reactivity ratio between the complexed and the uncomplexed substrate, is 8.1 x 10(4) for the OH(-)-induced elimination of 2. This high MetAF can be compared with the corresponding proton activating factor (Alunni, S.; Conti, A.; Palmizio Errico, R. J. Chem. Soc., Perkin Trans. 2 2000, 453), PAF = 1.5 x 10(6) and is in agreement with an E1cb irreversible mechanism (A(xh)D(E)* + D(N)) (Guthrie, R. D.; Jencks, W. P. Acc. Chem. Res. 1989, 22, 343). A value of k(C)(H2O)>or= 23 x 10(-7) s(-1) is estimated for the Cd(2+)-complexed isomer 2, while catalysis by Cd(2+) has not been observed for isomer 1.  相似文献   

11.
One-electron oxidation of [(Me(n)tpa)Ir(I)(ethene)]+ complexes (Me(3)tpa = N,N,N-tri(6-methyl-2-pyridylmethyl)amine; Me(2)tpa = N-(2-pyridylmethyl)-N,N,-di[(6-methyl-2-pyridyl)methyl]-amine) results in relatively stable, five-coordinate Ir(II)-olefin species [(Me(n)tpa)Ir(II)(ethene)](2+) (1(2+): n = 3; 2(2+): n = 2). These contain a "vacant site" at iridium and a "non-innocent" ethene fragment, allowing radical type addition reactions at both the metal and the ethene ligand. The balance between metal- and ligand-centered radical behavior is influenced by the donor capacity of the solvent. In weakly coordinating solvents, 1(2+) and 2(2+) behave as moderately reactive metallo-radicals. Radical coupling of 1(2+) with NO in acetone occurs at the metal, resulting in dissociation of ethene and formation of the stable nitrosyl complex [(Me(3)tpa)Ir(NO)](2+) (6(2+)). In the coordinating solvent MeCN, 1(2+) generates more reactive radicals; [(Me(3)tpa)Ir(MeCN)(ethene)](2+) (9(2+)) by MeCN coordination, and [(Me(3)tpa)Ir(II)(MeCN)](2+) (10(2+)) by substitution of MeCN for ethene. Complex 10(2+) is a metallo-radical, like 1(2+) but more reactive. DFT calculations indicate that 9(2+) is intermediate between the slipped-olefin Ir(II)(CH(2)=CH(2)) and ethyl radical Ir(III)-CH(2)-CH(2). resonance structures, of which the latter prevails. The ethyl radical character of 9(2+) allows radical type addition reactions at the ethene ligand. Complex 2(2+) behaves similarly in MeCN. In the absence of further reagents, 1(2+) and 2(2+) convert to the ethylene bridged species [(Me(n)tpa)(MeCN)Ir(III)(mu(2)-C(2)H(4))Ir(III)(MeCN)(Me(3)tpa)](4+) (n = 3: 3(4+); n = 2: 4(4+)) in MeCN. In the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxo), formation of 3(4+) from 1(2+) in MeCN is completely suppressed and only [(Me(3)tpa)Ir(III)(TEMPO(-))(MeCN)](2+) (7(2+)) is formed. This is thought to proceed via radical coupling of TEMPO at the metal center of 10(2+). In the presence of water, hydrolysis of the coordinated acetonitrile fragment of 7(2+) results in the acetamido complex [(Me(3)tpa)Ir(III)(NHC(O)CH(3)))(TEMPOH)](2+) (8(2+)).  相似文献   

12.
Compared to earlier single site catalysts, greatly enhanced rates of electrocatalytic water oxidation by the Ru carbene catalyst [Ru(tpy)(Mebim-py)(OH(2))](2+) (tpy = 2,2':6',2'-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene) have been observed. The mechanism appears to be the same with proton coupled electron transfer (PCET) activation to Ru(V)=O(3+) followed by O-O coupling and further oxidation. An important factor in the enhanced reactivity of the carbene complex may come from increased driving force for the O-O bond forming step.  相似文献   

13.
The reactions of Zn(OAc)(2) with acetoacetanilide, methyl acetoacetate, o-acetoacetanisidide, and ethyl 2-methylacetoacetate thiosemicarbazones (HTSC(1), HTSC(2), HTSC(3), and HTSC(4), respectively) were explored in methanol. With HTSC(1), HTSC(2), and HTSC(3), following isolation of the corresponding zinc(II) thiosemicarbazonates [Zn(TSC(x))(2)] (x = 1, 2, 3), the mother liquors afforded pyrazolonate complexes [ZnL(1)(2)(H(2)O)] (HL(1) = 2,5-dihydro-3-methyl-5-oxo-1H-pyrazole-1-carbothioamide) that had been formed by cyclization of the corresponding TSC(-). The reaction of HTSC(4) with zinc(II) acetate gave only the pyrazolonate complex [ZnL(2)(2)(H(2)O)] (HL(2) = 2,5-dihydro-3,4-dimethyl-5-oxo-1H-pyrazole-1-carbothioamide). All compounds were studied by IR and NMR spectroscopy, and HTSC(3), [Zn(TSC(3))(2)] x DMSO, [ZnL(1)(2)(H(2)O)] x 2DMSO, and [ZnL(2)(2)(H(2)O)] x 2DMSO were also studied by X-ray diffractometry, giving a thorough picture of the cyclization process. In preliminary tests of the effects of HL(1) and [ZnL(1)(2)(H(2)O)] on rat paw inflammatory edema induced by carrageenan, HL(1) showed antiinflammatory activity.  相似文献   

14.
Introduction of a (Cys)(4) metal binding site at the dimerization interface of two fluorescent protein domains yields a chelating FRET sensor protein that shows a 2500-fold selectivity for Cd(2+) over Zn(2+) by taking advantage of their different ionic radii.  相似文献   

15.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

16.
Bo QB  Wang HY  Wang DQ  Zhang ZW  Miao JL  Sun GX 《Inorganic chemistry》2011,50(20):10163-10177
In attempts to investigate whether the photoluminescence properties of the Zn-based heterometal-organic frameworks (MOFs) could be tuned by doping different Ln(3+) (Ln = Sm, Eu, Tb) and Mn(2+) ions, seven novel 3D homo- and hetero-MOFs with a rich variety of network topologies, namely, [Zn(mip)](n) (Zn-Zn), [Zn(2)Mn(OH)(2)(mip)(2)](n) (Zn-Mn), [Mn(2)Mn(OH)(2)(mip)(2)](n) (Mn-Mn), [ZnSm(OH)(mip)(2)](n) (Zn-Sm), [ZnEu(OH)(mip)(2)](n) (Zn-Eu1), [Zn(5)Eu(OH)(H(2)O)(3)(mip)(6)·(H(2)O)](n) (Zn-Eu2), and [Zn(5)Tb(OH)(H(2)O)(3)(mip)(6)](n) (Zn-Tb), (mip = 5-methylisophthalate dianion), have been synthesized hydrothermally based on a single 5-methylisophthalic acid ligand. All compounds are fully structurally characterized by elemental analysis, FT-IR spectroscopy, TG-DTA analysis, single-crystal X-ray diffraction, and X-ray powder diffraction (XRPD) techniques. The various connectivity modes of the mip linkers generate four types of different structures. Type I (Zn-Zn) is a 3D homo-MOF with helical channels composed of Zn(2)(COO)(4) SBUs (second building units). Type II (Zn-Mn and Mn-Mn) displays a nest-like 3D homo- or hetero-MOF featuring window-shaped helical channels composed of Zn(4)Mn(2)(OH)(4)(COO)(8) or Mn(4)Mn(2)(OH)(4)(COO)(8) SBUs. Type III (Zn-Sm and Zn-Eu1) presents a complicated corbeil-like 3D hetero-MOF with irregular helical channels composed of (SmZnO)(2)(COO)(8) or (EuZnO)(2)(COO)(8) heterometallic SBUs. Type IV (Zn-Eu2 and Zn-Tb) contains a heterometallic SBU Zn(5)Eu(OH)(COO)(12) or Zn(5)Tb(OH)(COO)(12), which results in a 3D hetero-MOF featuring irregular channels impregnated by parts of the free and coordinated water molecules. Photoluminescence properties indicate that all of the compounds exhibit photoluminescence in the solid state at room temperature. Compared with a broad emission band at ca. 475 nm (λ(ex) = 380 nm) for Zn-Zn, compound Zn-Mn exhibits a remarkably intense emission band centered at 737 nm (λ(ex) = 320 nm) due to the characteristic emission of Mn(2+). In addition, the fluorescence intensity of compound Zn-Mn is stronger than that of Mn-Mn as a result of Zn(2+) behaving as an activator for the Mn(2+) emission. Compound Zn-Sm displays a typical Sm(3+) emission spectrum, and the peak at 596 nm is the strongest one (λ(ex) = 310 nm). Both Zn-Eu1 and Zn-Eu2 give the characteristic emission transitions of the Eu(3+) ions (λ(ex) = 310 nm). Thanks to the ambient different crystal-field strengths, crystal field symmetries, and coordinated bonds of the Eu(3+) ions in compounds Zn-Eu1 and Zn-Eu2, the spectrum of the former compound is dominated by the (5)D(0) → (7)F(2) transition (612 nm), while the emission of the (5)D(0) → (7)F(4) transition (699 nm) for the latter one is the most intense. Compound Zn-Tb emits the characteristic Tb(3+) ion spectrum dominated by the (5)D(4) → (7)F(5) (544 nm) transition. Upon addition of the different activated ions, the luminescence lifetimes of the compounds are also changed from the nanosecond (Zn-Zn) to the microsecond (Zn-Mn, Mn-Mn, and Zn-Sm) and millisecond (Zn-Eu1, Zn-Eu2, and Zn-Tb) magnitude orders. The structure and photoluminescent property correlations suggest that the presence of Mn(2+) and Ln(3+) ions can activate the Zn-based hetero-MOFs to emit the tunable photoluminescence.  相似文献   

17.
Starting from closely related metal-ligand combinations, completely different oligomeric metal clusters are synthesized. Whereas, picoline-tetrazolylamide HL(1) (1) and zinc or nickel acetate afforded [2x2] grids [M(4)(L(1))(8)] (2), slightly different N-(2-methylthiazole-5-yl)-thiazole-2-carboxamide HL(2) (5 a) and nickel acetate yielded the monometallic complex [Ni(L(2))(2)(OH(2))(2)] (6). In contrast, reaction of 5 a with zinc acetate produced the tetrametallic zinc cluster [Zn(4)O(L(2))(4)(OAc)(2)] (7). Even more surprising, when 3-methyl-substituted HL(3) (5 b) instead of 2-methyl-substituted HL(2) (5 a) was allowed to react under identical conditions with zinc acetate, the cluster [Zn(4)O(L(3))(4)Cl(2)] (8) crystallized from dichloromethane. Clusters 7 and 8 are isostructural. As for 7, in 8 two of the edges of the tetrahedron of zinc ions are doubly bridged, two are singly bridged, and the other two are nonbridged. On the other hand, when iron(II) acetate under aerobic conditions was allowed to react with 5 a, the unprecedented complex [[Fe(3)O(L(2))(2)(OAc)(4)](2)O] (9) was isolated. Cluster 9 is composed of two trimetallic, triangular mu(3)-O(2-)-centered [Fe(3)O(L(2))(2)(OAc)(4)](+) modules, linked by an almost linear mu(2)-O(2-) bridge. The M?ssbauer spectrum together with cyclic voltammetric and square-wave voltammetric measurements of 9 are reported, and 6-9 were characterized unequivocally by single-crystal X-ray structure analyses.  相似文献   

18.
The stability constants of the 1:1 complexes formed between Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) (=M(2+)) and 1-methyl-4-aminobenzimidazole (MABI) or 1,4-dimethylbenzimidazole (DMBI) were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.5 M, NaNO(3)). Some of the stability constants were also measured by UV spectrophotometry. The acidity constants of the species H(2)(MABI)(2+) and H(DMBI)(+) were determined by the same methods, some twice. Comparison of the stability constants of the M(MABI)(2+) and M(DMBI)(2+) complexes with those calculated from log versus p straight-line plots, which were established previously for sterically unhindered benzimidazole-type ligands (=L), reveals that the stabilities of the M(MABI)(2+) and M(DMBI)(2+) complexes are significantly reduced due to steric effects of the C4 substituents on metal ion binding at N3. This effect is more pronounced in the M(DMBI)(2+) complexes. Considering the steric equivalence of methyl and (noncoordinating) amino groups (as they occur in adenines), it is concluded that the same extent of steric inhibition by the (C6)NH(2) group is to be expected on metal ion binding at N7 with adenine derivatives. The basicity of the amino group in MABI is significantly higher than in its corresponding adenine derivative. Indeed, it is concluded that in the M(MABI)(2+) complexes chelate formation involving the amino group occurs to some extent. The formation degrees of these "closed" species are calculated; they vary for the complexes of Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) between about 50 and 90%. The stability of the M(MABI)(2+) and M(DMBI)(2+) complexes with the alkaline earth ions is very low but unaffected by the C4 substituent; this probably indicates that in these instances outersphere complexes (with a water molecule between N3 and the metal ion) are formed.  相似文献   

19.
VO(2+) doped single crystal of Ba(2)Zn(HCOO)(6)(H2O)(4) (BZFA) were investigated using electron paramagnetic resonance (EPR) technique at ambient temperature. Detailed investigation of EPR spectra indicated that the VO(2+) substitutes the Zn(2+) in the structure. The sites with different orientations were observed for VO(2+) in Ba(2)Zn(HCOO)(6)(H2O)(4).single crystal, but the only intense site among these sites was evaluated to obtain spin-Hamiltonian parameters, which are the principal axis values of the g and the hyperfine tensors. The covalent bonding parameter for VO(2+) and Fermi contact term were calculated using the spin-Hamiltonian parameters.  相似文献   

20.
Three fluorescent probes CdABA', CdABA and ZnABA', which are structural isomers of ZnABA, have been designed with N,N-bis(2-pyridylmethyl) ethylenediamine (BPEA) as chelator and 2-aminobenzamide as fluorophore. These probes can be divided into two groups: CdABA, CdABA' for Cd(2+) and ZnABA, ZnABA' for Zn(2+). Although there is little difference in their chemical structures, the two groups of probes exhibit totally different fluorescence properties for preference of Zn(2+) or Cd(2+). In the group of Zn(2+) probes, ZnABA/ZnABA' distinguish Zn(2+) from Cd(2+) with F(Zn)(2+)-F(Cd)(2+) = 1.87-2.00. Upon interchanging the BPEA and carbamoyl groups on the aromatic ring of the fluorophore, the structures of ZnABA/ZnABA' are converted into CdABA/CdABA'. Interestingly, the metal ions selectivity of CdABA/CdABA' was switched to discriminate Cd(2+) from Zn(2+) with F(Cd)(2+)-F(Zn)(2+) = 2.27-2.36, indicating that a small structural modification could lead to a remarkable change of the metal ion selectivity. (1)H NMR titration and ESI mass experiments demonstrated that these fluorescent probers exhibited different coordination modes for Zn(2+) and Cd(2+). With CdABA' as an example, generally, upon addition of Cd(2+), the fluorescence response possesses PET pathway to display no obvious shift of maximum λ(em) in the absence or presence of Cd(2+). However, an ICT pathway could be employed after adding Zn(2+) into the CdABA' solution, resulting in a distinct red-shift of maximal λ(em).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号