首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alignment effect in the dissociative energy transfer reaction of Ar((3)P(2))+(X(2)O)(n)(X=N,H) was directly measured using an oriented Ar((3)P(2),M(J)=2) beam. The chemiluminescence intensity of N(2)(B,(3)Pi(g)) for (N(2)O)(n) and OH(A,(2)Sigma(+)) for (H(2)O)(n) was measured as a function of the magnetic orientation field direction in the collision frame. The relative reaction cross section for each magnetic substate in the collision frame, sigma(M(J) (') ), was determined. In both the reaction systems, it is observed that the dimer formation significantly enhances the alignment effect and decreases the reactivity, especially for sigma|1| and sigma|2|. A significant contribution of rank 4 moment is recognized in the dimer reaction.  相似文献   

2.
Steric effect for the formation of N 2 (B, (3)Pi u ) in the energy transfer reaction of Kr ( (3)P 2) + N 2 has been measured using an oriented Kr ( (3)P 2, M J = 2) beam at a collision energy of 0.07 eV. The N 2 (B, (3)Pi u ) emission intensity was measured as a function of the magnetic orientation field direction in the collision frame. A significant atomic alignment effect on the energy transfer probability was observed. This result was compared with that for the formation of N 2 (C, (3)Pi g ) in the Ar ( (3)P 2) + N 2 reaction. Despite the large difference on the energy transfer cross-section, the atomic alignment dependence for Kr ( (3)P 2) + N 2 is found to be analogous to that for Ar ( (3)P 2) + N 2. It is revealed that the configuration of inner 4p (3p) orbital in the collision frame gives an important role for the stereoselectivity on electron transfer process via the curve-crossing mechanism.  相似文献   

3.
Atomic alignment effects for the formation of ArCl*(C) and CCl2*(A) in the reaction of Ar((3)P 2) + CCl 4 have been measured by using an oriented Ar( (3)P2, M J=2) beam at a collision energy of 0.08 eV. The emission intensity for ArCl*(C) and CCl2*(A) has been measured as a function of the magnetic orientation field direction in the collision frame. A significant atomic alignment effect is observed for the atom transfer process [ArCl*(C) formation]. Formation of ArCl*(C) is modestly enhanced when the electron angular momentum of the Ar((3)P 2) reactant is aligned along the relative velocity vector, while the excitation transfer process [CCl2*(A) formation] shows little alignment effect.  相似文献   

4.
Atomic orientation effect for the CH(3)O(*) formation has been studied for the dissociative energy transfer reaction of oriented Ar ((3)P(2)) with CH(3)OH. The degree of polarization of CH(3)O(*) chemiluminescence was determined as a function of each magnetic M(J) (') substate in the collision frame. A drastic change of the product angular momentum alignment due to atomic orientation was recognized.  相似文献   

5.
Atomic alignment effect for the CF3* formation in the oriented Ar (3P2, MJ = 2) + CF3H reaction has been investigated at different two CF3H beam conditions: effusive and supersonic beams. The chemiluminescence intensity of CF3* was measured as a function of the magnetic orientation field direction in the collision frame. A significant contribution of rank 4 moment was recognized. The cross-section for each magnetic M'(J) substate in the collision frame, sigma|M'(J)|, was determined to be sigma(|M'(J)|=0):sigma(|M'(J)|=1):sigma(|M'(J)|=2) = 1.00:0.84 +/- 0.02:0.88 +/- 0.02 for the effusive CF3H beam condition. The atomic alignment effect was found to significantly depend on the CF3H beam condition. For the supersonic beam condition, sigma(|M'(J)|=0&1) was changed to be smaller than sigma(|M'(J)|=2).  相似文献   

6.
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.  相似文献   

7.
The syntheses of Ir(I) and Ir(III) complexes incorporating the electron-withdrawing pincer ligand (1,3-C(6)H(4)(CH(2)P(CF(3))(2))(2)) ((CF(3))PCPH) with (PPh(3))(3)Ir(CO)H and subsequent chemistry are reported. Under ambient conditions, reaction of 1 equiv. (CF(3))PCPH with (PPh(3))(3)Ir(CO)H gave the mono-bridged complex [Ir(CO)(PPh(3))(2)(H)](2)(μ-(CF(3))PCPH) (1). Reaction of (PPh(3))(3)Ir(CO)H with excess (CF(3))PCPH and MeI gave the doubly-bridged complex [Ir(CO)(PPh(3))(H)](2)(μ-(CF(3))PCPH)(2) (2), whereas the tetrameric oligomer [Ir(CO)(PPh(3))(H)](4)(μ-(CF(3))PCPH)(4) (2-sq) was obtained from a 1:1 ligand:metal mixture in benzene in the presence of excess MeI. At higher temperatures (165 °C) the reaction of (CF(3))PCPH with (PPh(3))(3)Ir(CO)H afforded the 5-coordinate Ir(I) complex ((CF(3))PCP)Ir(CO)(PPh(3)) (3). Complex 3 shows mild catalytic activity for the decarbonylation of 2-naphthaldehyde in refluxing diglyme (162 °C).  相似文献   

8.
Wang N  Wang M  Liu T  Li P  Zhang T  Darensbourg MY  Sun L 《Inorganic chemistry》2008,47(15):6948-6955
Selective synthetic routes to isomeric diiron dithiolate complexes containing the (EtO) 2PN(Me)P(OEt) 2 (PNP) ligand in an unsymmetrical chelating role, for example, (mu-pdt)[Fe(CO) 3][Fe(CO)(kappa (2)-PNP)] ( 3) and as a symmetrically bridging ligand in (mu-pdt)(mu-PNP)[Fe(CO) 2] 2 ( 4), have been developed. 3 was converted to 4 in 75% yield after extensive reflux in toluene. The reactions of 3 with PMe 3 and P(OEt) 3 afforded bis-monodentate P-donor complexes (mu-pdt)[Fe(CO) 2PR 3][Fe(CO) 2(PNP)] (PR 3 = PMe 3, 5; P(OEt) 3, 7), respectively, which are formed via an associative PMe 3 coordination reaction followed by an intramolecular CO-migration process from the Fe(CO) 3 to the Fe(CO)(PNP) unit with concomitant opening of the Fe-PNP chelate ring. The PNP-monodentate complexes 5 and 7 were converted to a trisubstituted diiron complex (mu-pdt)(mu-PNP)[Fe(CO)PR 3][Fe(CO) 2] (PR 3 = PMe 3, 6; P(OEt) 3, 8) on release of 1 equiv CO when refluxing in toluene. Variable-temperature (31)P NMR spectra show that trisubstituted diiron complexes each exist as two configuration isomers in solution. All diiron dithiolate complexes obtained were characterized by MS, IR, NMR spectroscopy, elemental analysis, and X-ray diffraction studies.  相似文献   

9.
The reaction of Mn(2)(CO)(7)(mu-S(2)) with [CpNi(CO)](2) yielded the paramagnetic new compound Cp(2)Ni(2)Mn(CO)(3)(mu(3)-S)(2) (1) and a new hexanuclear metal product Cp(2)Ni(2)Mn(4)(CO)(14)(mu(6)-S(2))(mu(3)-S)(2) (2). Structurally, compound 1 contains two triply bridging sulfido ligands on opposite sides of an open Ni(2)Mn triangular cluster. EPR and temperature-dependent magnetic susceptibility measurements of 1 show that it contains one unpaired electron. The electronic structure of 1 was determined by Fenske-Hall molecular orbital calculations which show that the unpaired electron occupies a low lying antibonding orbital delocalized unequally across the three metal atoms. The selenium homologue Cp(2)Ni(2)Mn(CO)(3)(mu(3)-Se)(2) (3) was obtained from the reaction of a mixture of Mn(2)(CO)(10) and [CpNi(CO)](2) with elemental selenium and Me(3)NO.2H(2)O. It also has one unpaired electron. Compound 1 reacted with elemental sulfur to yield the dinickeldimanganese compound, Cp(2)Ni(2)Mn(2)(CO)(6)(mu(4)-S(2))(mu(4)-S(5)), 4, which can also be made from the reaction of Mn(2)(CO)(7)(mu-S(2)) with [CpNi(CO)](2) and sulfur. Compound 4 was converted back to 1 by sulfur abstraction using PPh(3). The reaction of Mn(2)(CO)(10) with [CpNi(CO)](2) in the presence of thiirane yielded the ethanedithiolato compound CpNiMn(CO)(3)(mu-SCH(2)CH(2)S) (5), which was also obtained from the reaction of Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)) with [CpNi(CO)](2) in the presence of thiirane. Compound 5 reacted with additional quantities of thiirane to yield the new compound CpNiMn(CO)(3)[mu-S(CH(2)CH(2)S)(2)], 6, which contains a 3-thiapentanedithiolato ligand that bridges the two metal atoms. Compound 6 was also obtained from the reaction of Mn(2)(CO)(10) with [CpNi(CO)](2) and thiirane. The molecular structures of the new compounds 1-6 were established by single-crystal X-ray diffraction analyses.  相似文献   

10.
Variable-temperature (13)C NMR spectra for a series of Fe(CO)(4)(PR(3)) complexes ligated by phosphatri(3-methylindolyl)methane (1), phosphatri(pyrrolyl)methane (2), P(N-3-methylindolyl)(3) (3), and P(N-pyrrolyl)(3) (4) are reported. Ligand 2 was prepared by reaction of tri(pyrrolyl)methane with PCl(3) in THF and Et(3)N. Compound 2 is stable to methanolysis, hydrolysis, and aerial oxidation at room temperature. Reactions of 2 with selenium powder and Rh(acac)(CO)(2) yield phosphatri(pyrrolyl)methane selenide (5) and Rh(acac)(CO)(2) (6), respectively. The carbonyl stretching frequency in the IR spectrum of 6 and the magnitude of (1)J(Se)(-)(P) in the (31)P NMR spectrum of 5 indicate that 2 is a strong pi-acid and a weak sigma-base, commensurate with its lack of reactivity with CH(3)I. The trend in the decreasing basicity of 2 and related phosphines and phosphites was determined to be P(NMe(2))(3) > 3 > 4 > 1 > P(OPh)(3) > 2. IR data for a series of Rh(acac)(CO)(PR(3)) complexes indicate the trend in decreasing pi-acceptor ability to be 2 approximately 1 > 4 > P(OPh)(3) > 3 > PPh(3). Phosphines 1-4 were reacted with Fe(2)(CO)(9) to yield Fe(CO)(4)(1) (7), Fe(CO)(4)(2) (8), Fe(CO)(4)(3) (9), and Fe(CO)(4)(4) (10), respectively. IR data for 7-10 support the trend in pi-acidity listed above. Variable-temperature (13)C NMR spectra for compounds 8-10 show a single doublet resonance for the carbonyls in the temperature range from -80 to 20 degrees C indicative of rapid intramolecular rearrangement of carbonyls between axial and equatorial sites. However, the (13)C NMR spectrum for 7 shows slowed axial-equatorial carbonyl exchange at 20 degrees C. The limiting slow-exchange spectrum is observed at -20 degrees C. Hindered carbonyl exchange in 7 is attributed to the rigid 3-fold symmetry and steric bulk of 1. In addition to characterization of the new compounds by NMR ((1)H, (13)C, and (31)P) spectroscopy, IR spectroscopy, mass spectrometry, and elemental analysis, compounds 2, 7, 9, and 10 were further characterized by X-ray crystallography.  相似文献   

11.
A per-O-methylated beta-cyclodextrin dimer, Py2CD, was conveniently prepared via two steps: the Williamson reaction of 3,5-bis(bromomethyl)pyridine and beta-cyclodextrin (beta-CD) yielding 2A,2'A-O-[3,5-pyridinediylbis(methylene)bis-beta-cyclodextrin (bisCD) followed by the O-methylation of all the hydroxy groups of the bisCD. Py2CD formed a very stable 1:1 complex (Fe(III)PCD) with [5,10,15,20-tetrakis(p-sulfonatophenyl)porphinato]iron(III) (Fe(III)TPPS) in aqueous solution. Fe(III)PCD was reduced with Na2S2O4 to afford the Fe (II)TPPS/Py2CD complex (Fe(II)PCD). Dioxygen was bound to Fe(II)PCD, the P(1/2)(O2) values being 42.4 +/- 1.6 and 176 +/- 3 Torr at 3 and 25 degrees C, respectively. The k(on)(O2) and k(off)(O2) values for the dioxygen binding were determined to be 1.3 x 10(7) M(-1) s(-1) and 3.8 x 10(3) s(-1), respectively, at 25 degrees C. Although the dioxygen adduct was not very stable (K(O2) = k(on)(O2)/k(off)(O2) = 3.4 x 10(3) M(-1)), no autoxidation of the dioxygen adduct of Fe(II)PCD to Fe(III)PCD was observed. These results suggest that the encapsulation of Fe (II)TPPS by Py2CD strictly inhibits not only the extrusion of dioxygen from the cyclodextrin cage but also the penetration of a water molecule into the cage. The carbon monoxide affinity of Fe(II)PCD was much higher than the dioxygen affinity; the P(1/2)(CO), k(on)(CO), k(off)(CO), and K(CO) values being (1.6 +/- 0.2) x 10(-2) Torr, 2.4 x 10(6) M(-1) s(-1), 4.8 x 10(-2) s(-1), and 5.0 x 10(7) M(-1), respectively, at 25 degrees C. Fe(II)PCD also bound nitric oxide. The rate of the dissociation of NO from (NO)Fe(II)PCD ((5.58 +/- 0.42) x 10(-5) s(-1)) was in good agreement with the maximum rate ((5.12 +/- 0.18) x 10(-5) s(-1)) of the oxidation of (NO)Fe(II)PCD to Fe(III)PCD and NO3(-), suggesting that the autoxidation of (NO)Fe(II)PCD proceeds through the ligand exchange between NO and O2 followed by the rapid reaction of (O2)Fe(II)PCD with released NO, affording Fe(II)PCD and the NO3(-) anion inside the cyclodextrin cage.  相似文献   

12.
Reaction of [Rh(CO)(2){(R,R)-Ph-BPE}][BF(4)] 1 under 7 bar H(2) provides the dihydride [Rh(H)(2)(CO)(2){(R,R)-Ph-BPE}][BF(4)] 3, which reacts with the neutral hydride [Rh(H)(CO){(R,R)-Ph-BPE}] 2 arising from 3 in THF. The resulting complex is the dimeric monocationic Rh((I))-Rh((III)) complex [Rh(H)(2)(CO)(2){(R,R)-Ph-BPE}][BF(4)] 4.  相似文献   

13.
Reaction of CS(2) with [(dtbpe)Ni](2)(η(2),μ-C(6)H(6)) (1; dtbpe =1,2-bis(di-tert-butylphosphino)ethane) in toluene gives the carbon disulfide complex (dtbpe)Ni(η(2)-CS(2)) (2), characterized by standard spectroscopic methods and X-ray crystallography. Reaction of CS(2) with the Ni(I) complex (dtbpe)Ni(OSO(2)CF(3)) gives the diamagnetic, trimetallic cluster [{(dtbpe)Ni(κ(1),η(2)-CS(2))}(2)(dtbpe)Ni][SO(3)CF(3)](2) (3-OTf). The solid-state structure of 3-OTf reveals that the two CS(2) ligands bind η(2) to two (dtbpe)Ni centers and κ(1) to the third, unique (dtbpe)Ni in the complex dication, and NMR spectroscopic data indicate that this structure is maintained in solution. Oxidation of 2 by ferrocenium hexafluorophosphate affords the identical trimetallic complex dication as the PF(6)(-) salt, [{(dtbpe)Ni(κ(1),η(2)-CS(2))}(2)(dtbpe)Ni][PF(6)](2) (3-PF(6)). These results are consistent with the intermediacy of a Ni(I)-CS(2) complex, [(dtbpe)Ni(CS(2))(+)], that is unstable with respect to disproportionation. Reaction of 1 with one equivalent of CO(2) provides the carbon dioxide adduct (dtbpe)Ni(η(2)-CO(2)) (4), that was also crystallographically characterized. Thermolysis of 4 in benzene solution at 80 °C results in reduction of the CO(2) ligand to CO, trapped as (dtbpe)Ni(CO)(2), and partial oxidation of a dtbpe ligand to give O═P(tert-Bu)(2)CH(2)CH(2)P(tert-Bu)(2).  相似文献   

14.
[Cp((CO)2Fe(PPh2H)]PF6 reacts with NaBH4 to give the intermediates CpFe(CO)2H and PPh2H, which are then converted into Cp(CO)(H)Fe(PPh2H). [Cp(CO)2FeL]PF6 (L = P(OMe)3, P(OEt)3 and P(OiPr)3) reacts with NaBH4 to give the product Cp(CO)(H)FeL directly without Cp(CO)2FeH and L even being formed transiently. The proposed reaction mechanism is that H attacks th phosphorus atom to give a metallaphosphorane complex, followed by coupling between a Cp(CO)2Fe fragment and H on the hypervalent phosphorus.  相似文献   

15.
The syntheses, structures, and magnetic properties of two pentanuclear cyanide-bridged compounds are reported. The trigonal bipyramidal molecule [[Ni(tmphen)(2)](3)[Fe(CN)(6)](2)].14H(2)O, (1).14H(2)O (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) crystallizes in the space group P2(1)/c (No. 14) with unit cell parameters a = 19.531(4) A, b = 24.895(5) A, c = 24.522(5) A, beta = 98.68(3) degrees, V = 11787(4) A(3), and Z = 4. The pi-pi interactions between the tmphen ligands provide the closest intermolecular contacts of 3.37 A leading to large intermolecular M...M distances (> 8.68 A). The dc magnetic susceptibility of 1 indicates a ferromagnetically coupled S = 4 ground state best fit to the parameters g = 2.23, J = +4.3 cm(-1), and D(Ni) = +8.8 cm(-1) for the Hamiltonian H = -2J [(S(Fe(1)) + S(Fe(2))).(S(Ni(1)) + S(Ni(2)) + S(Ni(3)))] + D[S(Ni(1))(z)(2) + S(Ni(2))(z)(2) + S(Ni(3))(z)(2)]. The extended square molecule [Ni(bpy)(2)(H(2)O)][[Ni(bpy)(2)](2)[Fe(CN)(6)](2)].12H(2)O, (2).12H(2)O (bpy = 2,2'-bipyridine) crystallizes in the space group P1 (No. 2) with unit cell parameters a = 13.264(3) A, b = 17.607(4) A, c = 18.057(4) A, alpha = 94.58(3) degrees, beta = 103.29(3) degrees, gamma = 95.18(3) degrees, V = 4065(2) A(3), and Z = 2. The pi-pi interactions of 3.29 A between the bpy ligands are the closest intermolecular contacts, and the intermolecular M...M separations are greater than 7.76 A. The dc magnetic susceptibility data for 2 are also in accord with an S = 4 ground state arising from intramolecular ferromagnetic coupling. The data were best fit to the parameters g = 2.25, J = J' = +3.3 cm(-1), and D(Ni) = +5.8 cm(-1) for the Hamiltonian H = -2J[(S(Fe(1)) + S(Fe(2))).(S(Ni(1)) + S(Ni(2)))] - 2J'[(S(Fe(2)).S(Ni(3)))] + D[S(Ni(1))(z)(2) + S(Ni(2))(z)(2) + S(Ni(3))(z)(2)]. No evidence for long-range magnetic ordering was observed for crystalline samples of 1 or 2.  相似文献   

16.
A series of nitrosyl tris(5,10,15-aryl)corrolate complexes of iron(III) Fe(Ar3C)(NO) with different substituents on the aryl groups have been prepared, and certain spectroscopic and reaction properties were compared. The cyclic voltammetric analysis of the various Fe(Ar3C)(NO) complexes demonstrated that both the one-electron oxidation and one-electron reduction potentials respond in systematic and nearly identical trends relative to the electron-donor properties of the substituents. A similar pattern was seen in the nitrosyl stretching frequency, nu(NO), which modestly decreased with the stronger donor substituents. Flash photolysis of Fe(Ar3C)(NO) solutions in toluene leads to NO dissociation followed by rapid [NO]-dependent decay of the transients formed (presumably Fe(Ar3C)) to regenerate the original spectra. As was seen in an earlier flash photolysis study of Fe(TNPC)(NO) (TNPC3- = 5,10,15-tris(4-nitro-phenyl)corrolate; Joseph, C.; Ford, P. C. J. Am. Chem. Soc. 2005, 127, 6737-6743), the second-order rate constants, k(NO), are all much faster ((1-9) x 10(8) M(-1) s(-1) at 298 K) than those for analogous iron(III) complexes of porphyrins. However, on a more microscopic level there is no obvious pattern in these rates with respect to the donor properties of the aryl ring substituents. The high reactivity of the ferric triarylcorrolates with NO data is interpreted in terms of the strongly electron-donating character of the Ar3C3- ligand and the quartet electronic configuration of the Fe(Ar3C) intermediate.  相似文献   

17.
Bis(imino)aryl NCN pincer Ni(II) complexes 2,6-(ArN=CH)(2)C(6)H(3)NiBr (1: Ar = 2,6-Me(2)C(6)H(3); 2: Ar = 2,6-Et(2)C(6)H(3); 3: Ar = 2,6-(i)Pr(2)C(6)H(3)) were prepared via the oxidative-addition of Ni(0)(Ph(3)P)(4) with bis(N-aryl)-2-bromoisophthalaldimine. These nickel complexes were characterized by NMR and elemental analyses. Their solid molecular structures were established by X-ray diffraction analyses. The nickel metal centers adopt distorted square planar geometries with the bromine atoms acting as one coordinate ligands. The NCN pincer Fe(II) complexes 2,6-(ArN=CH)(2)C(6)H(3)Fe(μ-Cl)(2)Li(THF)(2) (4: Ar = 2,6-Me(2)C(6)H(3); 5: Ar = 2,6-Et(2)C(6)H(3); 6: Ar = 2,6-(i)Pr(2)C(6)H(3)) were synthesized by lithium salt metathesis reactions of the ligand lithium salts with FeCl(2). X-ray structure analyses of 4 and 5 revealed that the Fe(II) complexes are hetero-dinuclear with the iron atoms in trigonal bipyramidal environments. When activated with MAO, the nickel complexes are active for norbornene vinyl polymerization but are inert for butadiene polymerization. The Fe(II) complexes show moderate activities in butadiene polymerization when activated with alkylaluminium, affording the cis-1,4 enriched polymer.  相似文献   

18.
In this paper we report slice imaging polarization experiments on the state-to-state photodissociation at 42,594 cm(-1) of spatially oriented OCS(v(2) = 1|JlM = 111) → CO(J) + S((1)D(2)). Slice images were measured of the three-dimensional recoil distribution of the S((1)D(2)) photofragment for different polarization geometries of the photolysis and probe laser. The high resolution slice images show well separated velocity rings in the S((1)D(2)) velocity distribution. The velocity rings of the S((1)D(2)) photofragment correlate with individual rotational states of the CO(J) cofragment in the J(CO) = 57-65 region. The angular distribution of the S((1)D(2)) velocity rings are extracted and analyzed using two different polarization models. The first model assumes the nonaxial dynamics evolves after excitation to a single potential energy surface of an oriented OCS(v(2) = 1|JlM = 111) molecule. The second model assumes the excitation is to two potential energy surfaces, and the OCS molecule is randomly oriented. In the high J region (J(CO) = 62-65) it appears that both models fit the polarization very well, in the region J(CO) = 57-61 both models seem to fit the data less well. From the molecular frame alignment moments the m-state distribution of S((1)D(2)) is calculated as a function of the CO(J) channel. A comparison is made with the theoretical m-state distribution calculated from the long-range electrostatic dipole-dipole plus quadrupole interaction model. The S((1)D(2)) photofragment velocity distribution shows a very pronounced strong peak for S((1)D(2)) fragments born in coincidence with CO(J = 61).  相似文献   

19.
trans-Rh(CO)(Cl)(P((CH(2))(14))(3)P) is prepared from trans-Rh(CO)(Cl)(P((CH(2))(6)CH[double bond, length as m-dash]CH(2))(3))(2) by a metathesis/hydrogenation sequence, and converted by substitution or addition reactions to Rh(CO)(I), Rh(CO)(2)(I), Rh(CO)(NCS), and Rh(CO)(Cl)(Br)(CCl(3)) species; the Rh(CO)(Cl) and Rh(CO)(I) moieties rapidly rotate within the cage-like diphosphine, but the other rhodium moieties do not.  相似文献   

20.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号