首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the tension between estimates of the Hubble Constant (H0) from local (z ? 1) and global (z ? 1) measurements, Lima and Cunha (LC) proposed a new method to measure H0 in intermediate redshifts (z ≈ 1), which were obtained H0 = 74.1 ± 2.2 km s??1Mpc??1 (1σ), in full agreement to local measurements via Supernovae/Cepheid dataset. However, Holanda et al. (Month. Not. R. Astronom. Soc. Lett. 443(1) L74–L78 (2014)) affirm that a better understanding of the morphology of galaxy clusters in LC framework is needed to a more robust and accurate determination of H0. Moreover, that kind of sample has been strongly questioned in the literature. In this context, (i) we investigated if the sample of galaxy clusters used by LC has a relevant role in their results, then (ii) we perform a more accurate and competitive determination of H0 in intermediate redshifts, free of unknown systematic uncertainties. First, we found that the exclusion of the sample of galaxy clusters from the determination initially proposed by LC leads to significantly different results. Finally, we performed a new determination in H0, where we obtained H0 = 68.00 ± 2.20 km s??1 Mpc??1 (1σ) with statistical and systematic errors and \(H_{0} = 68.71^{+?1.37}_{-1.45}\) km s??1 Mpc??1 (1σ) with statistical errors only. Contrary to those obtained by LC, these values are in full harmony with the global measurements via Cosmic Microwave Background (CMB) radiation and to the other recent estimates of H0 in intermediate redshifts.  相似文献   

2.
The EPR spectrum of a KDy(WO4)2 monoclinic crystal is investigated. It is found that the EPR spectrum of magnetically concentrated materials at a low frequency (9.2 GHz) undergoes a substantial transformation in addition to the well-known broadening of the EPR lines. At low Dy3+ concentrations (x<10?2), the EPR spectrum of an isomorphic crystal, namely, KY(1?x)Dyx(WO4)2, is characterized by the parameters gx=0, gy=1.54, and gz=14.6. For a magnetically concentrated crystal KDy(WO4)2, the g values are as follows: gx=0, gy=0.82, and gz=2.52. It is demonstrated that the difference in the parameters is associated with the specific spin-spin interaction between Dy3+ ions, including the Dzyaloshinski interaction, which is not observed at high frequencies.  相似文献   

3.
The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong maximum of negative magnetoresistance of ≈27% (for μ0H = 4 T) was observed at T ≈360 K. While the magnetoresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at 150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is fitted well by the relation ρ = ρ0 + ρ 1(H)T2.3, where ρ0 = 1.1×10?4 Ω cm, ρ1(H = 0) = 1.8×10?9 Ω cm/K2.3, and ρ10H = 4 T)/ρ1(H = 0) ≈0.96. The temperature dependence of a parameter γ characterizing the extent to which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic field (μ 0H = 5 T) was determined.  相似文献   

4.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

5.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

6.
We report a quantitative investigation of the magnetic field-temperature phase diagram by taking into account a simple phenomenological model arising out of the interplay of kinetic arrest and thermodynamic transitions in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3, through magnetization measurements. Such studies are necessary as kinetic arrest plays an important role in the formation of “magnetic glasses”, which has been observed in systems undergoing first order magnetic phase transitions. It has been shown that disorder in a system results in the formation kinetic arrest (H K ,T K ) band, like supercooling (H *,T *) and superheating (H **,T **) band. Quantitative proofs are given to show that (H K ,T K ) band is anticorrelated with (H *,T *) and (H **,T **) bands, while the later two are correlated among themselves. Analysis of time dependence of magnetization at different temperatures is carried out to establish the fact that the kinetic arrested state is different from the supercooled state.  相似文献   

7.
Magnetic, elastic, magnetoelastic, transport, and magnetotransport properties of the Eu0.55Sr0.45MnO3 ceramics have been studied. A break was detected in the temperature dependence of electrical resistivity ρ(T) near the temperature of the magnetic phase transformation (41 K), with the material remaining an insulator down to the lowest measurement temperature reached (ρ=106 Ω cm at 4.2 K). In the interval 4.2≤T≤50 K, the isotherms of the magnetization, volume magnetostriction, and ρ were observed to undergo jumps at the critical field HC1, which decreases with increasing T. For 50≤T≤120 K, the jumps in the above curves persist, but the pattern of the curves changes and HC1 grows with increasing T. The magnetoresistance Δρ/ρ = (ρ H H=0)/ρ H is positive for H<HC1 and passes through a maximum at 41 K, where Δρ/ρ = 6%. For H>HC1, the magnetoresistance is negative, passes through a minimum near 41 K, and reaches a colossal value of 3×105 % at H=45 kOe. The volume magnetostriction is negative and attains a giant value of 4.5×10?4atH=45 kOe. The observed properties are assigned to the existence of three phases in Eu0.55Sr0.45MnO3, namely, a ferromagnetic (FM) phase, in which carriers are concentrated because of the gain in s-d exchange energy, and two antiferromagnetic (AFM) phases of the A and CE types. Their fractional volumes at low temperatures were estimated to be as follows: ~3% of the sample volume is occupied by the FM phase; ~67%, by the CE-type AFM phase; and ~30%, by the A-type AFM phase.  相似文献   

8.
Long-time polarization relaxation in the temperature range where PBSN-6 single crystals reside in the relaxor state was studied. An analysis of the time dependence of the permittivity ε′(t) performed at measuring frequencies from 1 Hz to 1 kHz in weak electric fields E0 showed that the relaxation (or freezing) times derived by extrapolating relations of the type ε′(t) ~ log(t/t0) and ε′(t) ~ exp{?[ln(t/t0)]β} range from 108 to 1011 min and depend substantially on the bias voltage applied to the sample. A study of the pattern of the dielectric response in moderate and strong infralow-frequency fields revealed that, after a sample was maintained under a bias lower than the coercive force, it no longer exhibited the additional anomalies in the amplitude dependences of the effective loss tangent taneff(E0) than were observed in a thermally recuperated sample.  相似文献   

9.
The temperature dependences of the intense magnetocaloric effect ΔT AD(T, H) and the heat capacity C p (T) of the (La0.4Eu0.6)0.7Pb0.3MnO3 manganite are directly measured using adiabatic calorimetry. The experimental dependences ΔT AD(T) are in satisfactory agreement with those calculated from the data on the behavior of the magnetization. The factors responsible for the absence of an anomaly in the experimental temperature dependence of the heat capacity C p (T) in the range of the magnetic phase transition are discussed.  相似文献   

10.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

11.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

12.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

13.
The polarized spectra of absorption and magnetic circular dichroism in a TmAl3(BO3)4 single crystal are studied in the region of 3 H 63 F 4, 3 H 63 F 3, and 3 H 63 F 2 electronic transitions in the Tm3+ ion. The structure of the spectra is interpreted qualitatively. It is shown that the magnetic circular dichroism of the 3 H 63 F 4 transition is determined by the contribution from the splitting of the ground state, whereas the magnetic circular dichroism of the 3 H 63 F 3 transition is governed by the contribution from the splitting of an excited state in a trigonal crystal field.  相似文献   

14.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

15.
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.  相似文献   

16.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

17.
The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α~20–400 cm?1) below ~3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6A1 state of the Fe3+ ion to its excited states 4T1(~1.4 eV), 4T2(~2 eV), and 4A1, 4E(~2.8 eV). Intense absorption begins in the region above 3 eV (α~2–4×105 cm?1), where two bands at ~4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.  相似文献   

18.
We reconsider the holographic dark energy (HDE) model with a slowly time varying c 2(z) parameter in the energy density, namely \(\rho _{D}=3{M_{p}^{2}} c^{2}(z)/L^{2}\), where L is the IR cutoff and z is the redshift parameter. As the system’s IR cutoff we choose the Hubble radius and the Granda-Oliveros (GO) cutoffs. The latter inspired by the Ricci scalar curvature. We derive the evolution of the cosmological parameters such as the equation of state and the deceleration parameters as the explicit functions of the redshift parameter z. Then, we plot the evolutions of these cosmological parameters in terms of the redshift parameter during the history of the universe. Interestingly enough, we observe that by choosing L = H ?1 as the IR cutoff for the HDE with time varying c 2(z) term, the present acceleration of the universe expansion can be achieved, even in the absence of interaction between dark energy and dark matter. This is in contrast to the usual HDE model with constant c 2 term, which leads to a wrong equation of state, namely that for dust w D =0, when the IR cutoff is chosen the Hubble radius.  相似文献   

19.
The experimentally determined energies and rotational constants of the vibrational levels v = 0–20 of the Ion-Pair states Ω = 0+, Ω = 1 of the I2, Br2, IBr, and ICl molecules are modeled. The model used includes three diabatic states, which correlate to X+(3P, 1D) + Y(1S0). These states are coupled by the spin-orbit interaction, which is assumed to be independent of the internuclear distance. For IBr and ICl, as well as for the ungerade states of I2 and Br2, satisfactory results are obtained. The model is less applicable to the gerade states of I2 and Br2, which is possibly results from the retainment of the asymptotic J A J B coupling of the angular momenta at equilibrium internuclear distances.  相似文献   

20.
High-frequency (HF) conductivity in systems with a dense (with a density of n = 3 × 1011 cm?2) array of self-organized Ge0.7Si0.3 quantum dots in silicon with different boron concentrations nB is determined by acoustic methods. The measurements of the absorption coefficient and the velocity of surface acoustic waves (SAWs) with frequencies of 30–300 MHz that interact with holes localized in quantum dots are carried out in magnetic fields of up to 18 T in the temperature interval from 1 to 20 K. Using one of the samples (nB = 8.2 × 1011 cm?2), it is shown that, at temperatures T ≤ 4 K, the HF conductivity is realized by the hopping of holes between the states localized in different quantum dots and can be explained within a two-site model in the case of
, where ω is the SAW frequency and τ0 is the relaxation time of the populations of the sites (quantum dots). For T > 7 K, the HF conductivity has an activation character associated with the diffusion over the states at the mobility threshold. In the interval 4 K < T < 7 K, the HF conductivity is determined by a combination of the hopping and activation mechanisms. The contributions of these mechanisms are distinguished; it is found that the temperature dependence of the hopping HF conductivity approaches saturation at T* ≈ 4.5 K, which points to a τ0 ≤ 1. A value of τ0(T*) ≈ 5 × 10?9 s is determined from the condition ωτ0(T*) ≈ 1.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号