首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral ellipsometry was used to study surface layers of Fe80 A 5B15 (A = Ti, V, Cr, Mn, Fe, Co, Ni) and Fe78-x NixSi9B13 (x = 0, 1, 4, 8, 16, 21 at. %) amorphous metal alloys obtained by melt spinning. The optical characteristics of the alloys were determined by solving the inverse problem of ellipsometry. A correlation between the optical properties of the surface layers of amorphous alloys and their thermal stability was found.  相似文献   

2.
The effect of copper alloying up to 25 at % on the structure–phase transformations and the physicomechanical properties of ternary alloys from the quasi-binary TiNi–TiCu section is studied by measuring the physicomechanical properties, transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction (XRD). The data of temperature measurements of the electrical resistivity and the magnetic susceptibility and XRD data are used to plot a general diagram for the thermoelastic B2 ? B19', B2 ? B19 ? B19', and B2 ? B19 martensitic transformations, which occur in the alloys upon cooling as the copper content increases in the ranges 0–8, 8–15, and 15–25 at % Cu, respectively. The experimental results are compared to the well-known data, including differential scanning calorimetry data, obtained for these alloys. The changes in the mechanical properties and the microstructure of the alloys in the state of B19 or B19' martensite are discussed.  相似文献   

3.
Amorphous and quenched crystalline Fe-B alloys in the composition range of 4–25 at % B were prepared by melt spinning and investigated by 57Fe Mössbauer spectroscopy at T = 87 K. The states of iron atoms in the α-Fe phases, including iron atoms having boron atoms in the nearest coordination sphere, and in the orthorhombic (o) and tetragonal (T) Fe2B phases are detected in the microcrystalline alloys. The short-range order and the local atomic structure of the amorphous Fe-B alloys are determined. The amorphous alloys consist of microregions (clusters) with short-range order of the t- and o-Fe2B and α-Fe types. The dependence of the content of various types of clusters on the alloy composition is quantitatively estimated.  相似文献   

4.
The stability of the B2 CuxFe1?x Al phases and the energy of defect formation are studied using ab initio band calculations. For B2 CuxFe1?x Al alloys, vacancies in the 3d-metal sublattice and configurations with the minimum number of Fe-Cu bonds in the first coordination shell (including Fe antisite defects, which have a high local magnetic moment) are most stable. Complicated defect complexes with vacancies and displaced atoms, which are close to the atomic configurations of vacancy-ordered AlCu phases, can exist near the composition Cu0.875Fe0.125Al.  相似文献   

5.
Amorphous and crystalline Fe-B alloys (5–25 at % B) were studied using pulsed 57Fe nuclear magneticr esonance at 4.2 K. The alloy samples were prepared from a mixture of the 57Fe and 10B isotopes by rapid quenching from the melt. In the microcrystalline Fe-(5–12 at %) B alloys, the resonance frequencies were measured for local states of 57Fe nuclei in the tetragonal and orthorhombic Fe3B phases and also in α-Fe. The resonance frequencies characteristic of 57Fe nuclei in α-Fe crystallites with substitutional impurity boron atoms in the nearest neighborhood were also revealed. In the resonance frequency distribution P(f) in the amorphous Fe-(18–25) at % B alloys, there are frequencies corresponding to local Fe atom states with short-range order of the tetragonal and orthorhombic Fe3B phases. As the boron content decreases below 18 at %, the P(f) distributions are shifted to higher frequencies corresponding to 57Fe NMR for atoms exhibiting a short-range order of the α-Fe type. The local magnetic structure of the amorphous Fe-B alloys is also considered.  相似文献   

6.
The magnetic properties of amorphous alloys of the Re-Tb system and pure amorphous terbium have been investigated by the Monte Carlo method within the Heisenberg model. The temperature dependences of the spontaneous magnetization and magnetic susceptibility have been constructed for different ratios of the anisotropy constant to the exchange constant, D/J. The minimum value of D/J at which the spin-glass transition occurs is determined. The magnetic phase diagram of amorphous Re-Tb alloys, obtained by the simulation, is in qualitative agreement with the experimental data.  相似文献   

7.
X-ray Magnetic Circular Dichroism (XMCD) technique was used to investigate local magnetic properties of microcrystalline Nd10.4Zr4.0Fe79.2B6.4 samples, oriented along either easy or hard magnetization direction. The Nd L 2,3 and Fe K edge XMCD spectra were measured at room temperature under a magnetic field of T. A very strong dependence of XMCD spectra on the sample orientation has been observed at the NdL 2,3-edges, whereas the Fe K-edge XMCD spectra are found to be practically isotropic. This result indicates that magnetic anisotropy of NdFeB-based alloys originates from the Nd sublattice. In addition, element selective magnetization curves have been recorded by measuring the intensity of XMCD signals as a function of an applied magnetic field up to T. To find a correlation between local and macroscopic magnetic properties of studied samples we compared these data with magnetization curves, measured by vibrating sample magnetometer up to T. Results are important for understanding the origin of high-coercivity state in NdFeB-based intermetallic compounds.  相似文献   

8.
The structural morphology and magnetic properties of thin FeTaN films with a high Ta content (10 wt %) prepared by annealing compounds deposited by reactive rf magnetron sputtering in an Ar + N gas mixture are studied. The dependence of the properties of FeTaN films on their nitrogen content and annealing temperature were established. The deposition and thermal treatment regimes favoring the preparation of thin nanostructural FeTaN films with high soft magnetic characteristics [B s = 1.6 T, H c = 0.2 Oe, and μ1 (1 MHz) = 3400] were determined.  相似文献   

9.
The Hall effect and the magnetoresistance of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. Normal R 0 and anomalous R S Hall coefficients are shown to be maximal in magnitudes in the middle of the 3d period of the periodic table of elements. Coefficient R 0 changes the negative sign to positive sign in going from weak (Y = Ti, V) to strong (Y = Cr, Mn, Fe, and Ni) ferromagnetic alloys. Constant R S is positive and proportional to ρ2.9 in all the alloys. The magnetoresistance of the alloys is not higher than several percent and its magnitude is changed fairly significantly in the dependence on the number of valence electrons z; the magnetoresistance signs vary arbitrarily.  相似文献   

10.
The magnetic and magnetotransport properties of cobaltites La0.5Sr0.5Co1–xMexO3 (Me = Cr, Ga, Fe) have been studied. The initial compound (x = 0) is a ferromagnet with TC = 247 K and a saturation magnetization close to 2μB per formula unit. It has ben shown that chromium substitution (x = 0.2) decreases the spontaneous magnetization to 0.3μB, while the iron substitution (x = 0.2) does not change the magnetization. The obtained data have been interpreted in a model of positive superexchange interactions between cobalt and iron and negative superexchange interactions between cobalt and chromium.  相似文献   

11.
The magnetic texture of (Fe1?x Cox)76Mo8Cu1B15 (x = 0, 0.5) nanocrystalline alloys is studied for different amounts of nanocrystalline grains. The originally amorphous alloys were annealed in external longitudinal and transverse magnetic fields of 0.025 T and 0.8T, respectively. Mössbauer measurements were carried out at room and liquid nitrogen temperatures in order to gain information on the hyperfine interactions and the orientation of the magnetization. The obtained results are compared with those received from zero-field annealed samples. Magneto-optical Kerr effect (MOKE) was applied for the investigation of possible changes at the surface of the x = 0 ribbon as a function of annealing temperature and applied magnetic field. A combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix, is unveiled.  相似文献   

12.
The problem of magnetic field penetration into the half-space is considered in parallel geometry in an external magnetic field increasing with time in accordance with the law B(0, t, τ0 = B c 1 (1 + t0) m , m ≥ 0, t ≥ 0 (τ 0 is the time of magnetic flux redistribution and B c 1 is the lower critical field). It is assumed that the flow of vortices is thermally activated in the “giant” creep mode (i.e., for weak pinning creep and high temperatures). A model equation is derived for describing the magnetic flux evolution. Analytic formulas are obtained for the depth and velocity of magnetic field penetration. It is shown that the giant creep regime is stable for 0 ≤ m ≤ 1/2.  相似文献   

13.
Effects of hybridization of 3d bands of iron with 3d bands of scandium and 4d bands of yttrium in Sc1?xYxFe2 cubic Laves alloys (0≤x≤1) are studied by the nuclear magnetic resonance method. The concentration dependences of the lattice parameters a, saturation magnetization σ, and hyperfine fields at the 57Fe, 45Sc, and 89Y nuclei—as well as the 27Al impurity nuclei, whose atoms substitute iron atoms in the lattices of these alloys—are measured. The “local” and “induced” contributions to hyperfine fields at the 57Fe nuclei are separated and the magnetic moments at iron atoms are estimated. It is found that the hybridization effect leads to the formation of magnetic moments at Sc and Y atoms (whose direction is opposite to the direction of the magnetic moment at iron atoms) and is responsible for the ferrimagnetic structure in Sc1?xYxFe2 alloys.  相似文献   

14.
The hyperfine-structure spectra of the 14.4 keVγ-ray of the nucleus57Fe in the spinel type ferrite (Li 05 + Fe 1.3 3+ Cr 1.2 3+ O 4 2? ) have been measured through the use of the Mößbauer effect. These measurements were performed on powder samples at different temperatures between 88 °K and 633 °K. For the Fe3+ ions at both the tetrahedral (A) and octahedral (B) sites at 88 °K the effective magnetic fieldH at the Fe nuclei is the same and equal to 504±4 kG. The temperature dependence ofH A however is different fromH B . Application of an external magnetic field of 20 kG shows that the sign ofH A is positive and the sign ofH B is negative. As the temperature is increased a considerable broadening of the magnetic hfs-lines (and especially of the outer pair of lines) is observed. No theoretical discussion directly applicable to these measurements is as yet available. In the paramagnetic phase a well resolved doublet is obtained. It appears that this doublet must be interpreted as a quadrupole splitting.  相似文献   

15.
The effect of temperatures (2–300 K) and high pressures (to 50 GPa) on the electrical and magnetic properties of crystalline materials based on copper and indium chalcogenides with the general formula (InB)1?x (CuAB 2)x, where A = As, Sb; and B = S, Se, and also crystalline CuInSe2 and CuInS2, has been studied.  相似文献   

16.
Direct experimental evidence has been obtained for the existence of short-range ferromagnetic order in GdxSi1?x alloys. Along with the standard magnetotransport measurements, a “local” experimental method of the elastic scattering of thermal neutrons on the magnetic moment of Gd is applied. The measurement results provide the conclusion that short-range ferromagnetic order is formed in nanoclusters with an increased content of Gd ions. We consider the amorphous alloy GdxSi1?x as a new magnetic material with unique properties characteristic of both strongly inhomogeneous alloys and nanocomposite compounds.  相似文献   

17.
We consider the problem of a hydrogen atom in a superstrong magnetic field, B? B a =2.35×109 G. The analytical formulas that describe the energy spectrum of this atom are derived for states with various quantum numbers nρ and m. A comparison with available calculations shows their high accuracy for B?B a . We note that the derived formulas point to a manifestation of the Zeldovich effect, i.e., a rearrangement of the atomic spectrum under the influence of strong short-range Coulomb potential distortion. We discuss the relativistic corrections to level energies, which increase in importance with magnetic field and become significant for B?1014 G. We suggest the parameters in terms of which the Zeldovich effect has the simplest form. Analysis of our precision numerical calculations of the energy spectrum for a hydrogen atom in a constant magnetic field indicates that the Zeldovich effect is observed in the spectrum of atomic levels for superstrong fields, B?5×1011 G. Magnetic fields of such strength exist in neutron stars and, possibly, in magnetic white dwarfs. We set lower limits for the fields Bmin required for the manifestation of this effect. We discuss some of the properties of atomic states in a superstrong magnetic field, including their mean radii and quadrupole moments. We calculated the probabilities of electric dipole transitions between odd atomic levels and a deep ground level.  相似文献   

18.
A comprehensive analysis of the structure, phase composition, surface topology features, and magnetic and magnetocaloric properties of Tb0.3Dy0.35Ho0.35Co1.75 T 0.25 (T = Al, Fe) multicomponent alloys has been performed. The specifics of variations in the structure and functional properties induced by the partial substitution of cobalt atoms in the 3d sublattice of RCo2 with aluminum or iron atoms have been determined.  相似文献   

19.
20.
Experimental studies of the antiferromagnetic (AF) heavy fermion metal YbRh2Si2 in a magnetic field B indicate the presence of a jump in the Hall coefficient at a magnetic-field tuned quantum state in the zero temperature limit. This quantum state occurs at BBc0 and induces the jump even though the change of the magnetic field at B = Bc0 is infinitesimal. We investigated this by using the model of heavy electron liquid with the fermion condensate. Within this model, the jump takes place when the magnetic field reaches the critical value Bc0 at which the ordering temperature TN(B = Bc0) of the AF transition vanishes. We show that at BBc0, this second order AF phase transition becomes the first order one, making the corresponding quantum and thermal critical fluctuations vanish at the jump. At T → 0 and B = Bc0 the Grüneisen ratio as a function of the temperature T diverges. We demonstrate that both the divergence and the jump are determined by the specific low temperature behavior of the entropy \(S(T) \propto S_0 + a\sqrt T + bT\) with S0; a and b are temperature independent constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号