首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work proposes the use of a novel extractant-impregnated resin (EIR) as an adsorbent in trace separation and pre-concentration of U(VI) and Th(IV) ions. The new EIR was prepared by impregnating carminic acid onto Amberlite XAD-16 resin beads. The morphology of new EIR was studied by BET surface area measurements and SEM micrographs. A column packed with CA/XAD-16 was used for selective separation and pre-concentration of the metal ions. Maximum adsorption of Th(IV) and U(VI) ions occurred at pHs of 3.50–5.75 and 3.75–6.50, respectively. The adsorbed metals could be eluted sequentially using 0.55?mol?L?1 HCl for U(VI) and 2.25?mol?L?1 HCl for Th(IV). The dynamic capacity of EIR was found to be 0.832 and 0.814?mmol?g?1 for Th(IV) and U(VI), respectively. The tolerance limit of some foreign ions was also studied. The proposed method showed a good performance in analyzing geological reference materials and a synthetic seawater sample. Furthermore, the above procedure was successfully employed for the analysis of natural water samples.  相似文献   

2.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

3.
Guo Y  Din B  Liu Y  Chang X  Meng S  Liu J 《Talanta》2004,62(1):207-213
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3σ detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58 μg l−1, respectively. The relative standard deviation of the determination was <10%.  相似文献   

4.
The speciation of inorganic Sb(III) and Sb(V) ions in aqueous solution was studied. The adsorption behavior of Sb(III) and Sb(V) ions were investigated as iodo and ammonium pyrollidine dithiocarbamate (APDC) complexes on a column filled with Amberlite XAD-8 resin. Sb(III) and Sb(V) ions were recovered quantitatively and simultaneously from a solution containing 0.8 M NaI and 0.2 M H2SO4 by the XAD-8 column. Sb(III) ions were also adsorbed quantitatively as an APDC complex, but the recovery of the Sb(V)-APDC complex was found to be <10% at pH 5. According to these data, the concentrations of total antimony as Sb(III)+Sb(V) ions and Sb(III) ion were determined with XAD-8/NaI+H2SO4 and XAD-8/APDC systems, respectively. The Sb(V) ion concentration was calculated by subtracting the Sb(III) concentration found with XAD-8/APDC system from the total antimony concentration found with XAD-8/NaI+H2SO4 system. The developed method was applied to determine Sb(III) and Sb(V) ions in samples of artificial seawater and wastewater.  相似文献   

5.
6.
Summary Solid complexes of 3-acetyl-1,5-diaryl and 3-cyano-1,5-diaryl formazans were prepared and characterized by elemental analysis, IR, NMR, TGA and DTA analyses. Based on these studies, the suggested general formula for the complexes is [M(HL) m (OH) n or (NO 3 or Cl) x ·(H2O) y or (C2H5OH orDMSO) z , where HL=formazanM=Ce3+, Th4+, and UO 2 2+ ,m=1–2,n=0–3,x=0–3,y=0–4 andz=0–3. The metal ions are expected to have coordination numbers 6–8.
Strukturuntersuchungen an 3-Acetyl-1,5-diaryl- und 3-Cyan-1,5-diaryl-formazan-Chelaten mit Cer(III), Thorium(IV) und Uran(VI)
Zusammenfassung Die hergestellten Chelate wurden mittels Elementaranalyse, IR, NMR, TGA und DTA charakterisiert. Darauf basierend wird die generelle Formel [M(HL) m (OH) n bzw. (NO 3 oder Cl) x ·(H2O) y oder (C2H5OH bzw.DMSO) z ] vorgeschlagen, wobei HL=Formazan,M=Ce3+, Th4+ oder UO 2 2+ ,m=1–2,n=0–3,x=0–3,y=0–4 undz=0–3. Die Metallionen haben Koordinationszahlen von 6–8.
  相似文献   

7.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

8.
A new grafted polymer has been developed by the chemical modification of Amberlite XAD-16 (AXAD-16) polymeric matrix with [(2-dihydroxyarsinoylphenylamino)methyl]phosphonic acid (AXAD-16-AsP). The modified polymer was characterized by a combination of 13C CPMAS and 31P solid-state NMR, Fourier transform-NIR-FIR-Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis (TGA). The distribution studies for the extraction of U(VI), Th(IV), and La(III) from acidic solutions were performed using an AXAD-16-AsP-packed chromatographic column. The influences of various physiochemical parameters on analyte recovery were optimized by both static and dynamic methods. Accordingly, even under high acidities (>4 M), good distribution ratio (D) values (102–104) were achieved for all the analytes. Metal ion desorption was effective using 1 mol L–1 (NH4)2CO3. From kinetic studies, a time duration of <15 min was sufficient for complete metal ion saturation of the resin phase. The maximum metal sorption capacities were found to be 0.25, 0.13, and 1.49 mmol g–1 for U(VI); 0.47, 0.39, and 1.40 mmol g–1 for Th(IV); and 1.44, 1.48, and 1.12 mmol g–1 for La(III), in the presence of 2 mol L–1 HNO3, 2 mol L–1 HCl, and under pH conditions, respectively. The analyte selectivity of the grafted polymer was tested in terms of interfering species tolerance studies. The system showed an enrichment factor of 365, 300, and 270 for U(VI), Th(IV), and La(III), and the limit of analyte detection was in the range of 18–23 ng mL–1. The practical applicability of the polymer was tested with synthetic nuclear spent fuel and seawater mixtures, natural water, and geological samples. The RSD of the total analytical procedure was within 4.9%, thus confirming the reliability of the developed method.  相似文献   

9.
《Analytical letters》2012,45(2):322-342
Abstract

The isolation, identification and characterization of bacteria obtained from soil of Ergani Makam Mountain were performed and the results revealed that the bacteria were thermophilic Anoxybacillus caldiproteolyticus. The characterized bacteria and purchased Geobacillus stearothermophilus were immobilized on Amberlite XAD-16 in order to prepare two biosorbents for preconcentration experiments for the determination of cadmium (II) ions. The produced biosorbents were enriched separately using mini-columns and the analyte was determined by flame atomic absorption spectrometry. The effects of solution parameters were investigated for the separation and preconcentration yields. The recovery efficiencies of Amberlite XAD-16 immobilized separately with A. caldiproteolyticus and G. stearothermophilus were determined to be 98.23?±?2.40 and 98.93?±?1.3 (n?=?5) for the optimum working conditions, respectively. Moreover, the Cd (II) ion was recovered with 10?mL of 1?mol L?1 of HCl and 2?mL of 0.5?mol L?1 HNO3 solutions. The optimum working conditions were determined to be at pH 6.0 and a flow rate of 2?mL min?1 for both biosorbents. The recovery efficiencies of matrix ions were characterized to investigate the feasibility of the developed preconcentration methods. The accuracy of the proposed methods were controlled by analyzing a SCP Science EnviroMAT Waste Water, Low (EU-L-2) certified reference material. The obtained results were comparable to the certified values. These methods were also applied to the analysis of water samples from Dicle River, Hazar Lake and Diyarbak?r tap water for Cd (II).  相似文献   

10.
Venkatesh G  Singh AK 《Talanta》2005,67(1):187-194
2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515 μmol g−1 and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t1/2 is ≤5 min. The chelating resin can be reused for 50 cycles of sorption-desorption without any significant change (<1.5%) in the sorption capacity. The limit of detection values (blank +3 s) are 1.12, 1.38, 1.76, 0.67, 0.77, 2.52, 5.92 and 1.08 μg L−1 for Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II), respectively. The enrichment on AXAD-16-DMABA coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine all the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples.  相似文献   

11.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

12.
Nielsen SC  Stürup S  Spliid H  Hansen EH 《Talanta》1999,49(5):27-1044
A rapid, robust, sensitive and selective time-based flow injection (FI) on-line solvent extraction system interfaced with electrothermal atomic absorption spectrometry (ETAAS) is described for analyzing ultra-trace amounts of Cr(VI). The sample is initially mixed on-line with isobutyl methyl ketone (IBMK). The Cr(VI) is complexed by reaction with ammonium pyrrolidine dithiocarbamate (APDC), and the non-charged Cr(VI)–PDC chelate formed is extracted into IBMK in a knotted reactor made from PTFE tubing. The organic extractant is separated from the aqueous phase by a gravity phase separator with a small conical cavity and delivered into a collector tube, from which 55 μl organic concentrate is subsequently introduced via an air flow into the graphite tube of the ETAAS instrument. The operations of the FI-system and the ETAAS detector are synchronously coupled. A significant advantage of the approach is that matrix constituents, such as high salt contents, effectively are eliminated. The extraction procedure was optimized by a simplex approach. A central composite design was subsequently employed to verify the estimated operational optimum. An 18-fold enhancement in sensitivity of Cr(VI) was achieved after preconcentration for 99 s at a sample flow rate of 5.5 ml min−1, as compared to direct introduction of 55 μl of sample, yielding a detection limit (3σ) of 3.3 ng l−1. The sampling frequency was 24.2 samples h−1. The proposed method was successfully evaluated by analyzing a NIST Cr(VI)-reference material, synthetic seawater and waste waters, and waste water samples from an incineration plant and a desulphurization plant, respectively.  相似文献   

13.
The environmental behaviors of uranium closely depend on its interaction with natural minerals. Ferrihydrite widely distributed in nature is considered as one main natural media that is able to change the geochemical behaviors of various elements. However, the semiconductor properties of ferrihydrite and its impacts on the environmental fate of elements are sometimes ignored. The present study systematically clarified the photocatalysis of U(VI) on ferrihydrite under anaerobic and aerobic conditions, respectively. Ferrihydrite showed excellent photoelectric response. Under anaerobic conditions, U(VI) was converted to U(IV) by light-irradiated ferrihydrite, in the form of UO2+x (x < 0.25), where •O2 was the dominant reactive reductive species. At pH 5.0, ~50% of U(VI) was removed after light irradiation for 2 h, while 100% U(VI) was eliminated at pH 6.0. The presence of methanol accelerated the reduction of U(VI). Under aerobic conditions, the light illumination on ferrihydrite also led to an obvious but slower removal of U(VI). The removal of U(VI) increased from ~25% to 70% as the pH increased from 5.0 to 6.0. The generation of H2O2 under aerobic conditions led to the formation of UO4•xH2O precipitates on ferrihydrite. Therefore, it is proved that light irradiation on ferrihydrite significantly changed the species of U(VI) and promoted the removal of uranium both under anaerobic and aerobic conditions.  相似文献   

14.
A validated spectrophotometric method has been developed for the determination of uranyl ion in soil samples. The method is based on the complexation reaction between uranyl ion and rifampicin in methanol‐water medium at room temperature. The method is followed spectrophotometrically by measuring the absorbance at 375 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration range of 1.35–20.25 μg mL‐1 with apparent molar absorptivity and Sandell's sensitivity of 8.0 × 103 L mol‐1cm‐1 and 0.042 μg/cm2/0.001 absorbance unit, respectively. The interference of a large number of anions and cations has been investigated and the optimized conditions developed have been utilized for the determination of uranium(VI) in soil samples. The three sigma detection limit (n = 9) for uranyl ion was found to be 0.20 μg mL‐1. The proposed method was successfully applied to the determination of uranyl ion in soil samples.  相似文献   

15.
Numerous commonly used analytical methods allow only determination of a total amount of selenium in a given sample. Electroanalytical methods as well as those based on hydride generation or on formation of piazselenol allow only determination of Se(IV). To determine Se(VI) by these procedures, present alone or in mixtures with Se(IV), it is first necessary to convert Se(VI) to Se(IV). Such conversion is effective in the presence of excess of halides in acidic media or by photoreduction. In the often used conversion of Se(VI) in the presence of chlorides or less frequently of that of bromides, it has been assumed that the halide ion acts as a reducing agent. Kinetic studies of conversion of Se(VI) in acidic solutions containing an excess of bromide ions indicated that the rate determining first step of the reaction with Se(VI) is a nucleophilic substitution of the OH2+ group in the protonated form of H2SeO4 by bromide ions. For the overall reaction with rate −d[Se(VI)]/dt = k1[H+][Br]1.15[Se(IV)] the rate constant 1 × 10−3 L2 mol−2 s−1 was found. The following formation of Se(IV) from the bromo derivative is a fast reaction probably resulting in elimination of HBrO.  相似文献   

16.
A new chelating polymeric sorbent as an extractant impregnated resin (EIR) has been developed using eosin B and Amberlite IRA-410 resin. The impregnation process was characterized by FT-IR spectroscopy. The eosin B-impregnated resin showed superior binding affinity for Th(IV) over U(VI) and many co-existing ions. The influence of various physicochemical parameters on the recovery of Th(IV) were optimized by both static and dynamic methods. The Langmuir adsorption isotherm gave a satisfactory fit of the equilibrium data. The kinetic studies performed for Th(IV) sorption revealed that <20 min was sufficient for reaching equilibrium metal ion sorption. A preconcentration factor of 100 was found for the column-mode extraction. The accuracy of the developed method in conjunction with Arsenazo III procedure was tested by analyzing geological reference materials and seawater sample, which are prepared, synthetically. Furthermore, the above procedure has been successfully employed for the analysis of natural water samples.  相似文献   

17.
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l−1 HCl for Se(IV) and 12 mol l−1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0–120 and 0–100 μg l−1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l−1 for Se(IV) and 1.5 μg l−1 for Se(VI). The precision (about 2.0–2.5% RSD) and recoveries (96–98% for Se(IV) and 94–98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.  相似文献   

18.
Taher MA  Rezaeipour E  Afzali D 《Talanta》2004,63(3):797-801
A highly selective and sensitive anodic stripping differential pulse polarographic method has been developed for the determination of trace amount of bismuth in various samples after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex on amberlite XAD-2 resin in the pH range of 2.0-3.0. The retained analyte on the resin recovered with 10.0 ml of 2 M hydrochloric acid and bismuth is determined by anodic stripping differential pulse polarography. In this case, 0.15 μg of bismuth can be concentrated in the column from 1100 ml of aqueous sample, where its concentration is as low as 0.14 ng ml−1 and the linearity is maintained in the concentration range 0.05-160 μg ml−1 in final solution with a correlation coefficient of 0.999 and relative standard deviation of ±1.2%. Various parameters such as the effect of pH, flow rate, and interference of number of metal ions on the determination of bismuth have been studied in detail to optimize the conditions for determination of bismuth in standard alloys: Nippon Keikinzoku Kogyo (NKK CRM No. 916 aluminum alloy); (NKK CRM No. 1021 Al, Si, Cu, Zn alloy); and (NKK CRM No. 920 aluminum alloy), biological samples: National Institute for Environmental Studies (NIES, No. 5 human hair; NIES, No. 7 tea leaves) and water samples: (spring water, river water; Kerman water; and Shiraz water).  相似文献   

19.
Himeno S  Kitano E  Chaen N 《Electrophoresis》2007,28(10):1525-1529
A CE method was developed for the simultaneous determination of Zr(IV) and Hf(IV) at trace levels. A lacunary Keggin-type [PW(11)O(39)](7-) ligand reacted quantitatively with a mixture of trace amounts of Zr(IV) and Hf(IV) to form the so-called ternary Keggin-type anions [P(Zr(IV)W(11))O(40)](5-) and [P(Hf(IV)W(11))O(40)](5-) in 0.010 M monochloroacetate buffer (pH 2.2). Since both ternary anions possessed different electrophoretic mobilities and high molar absorptivities in the UV region, Zr(IV) and Hf(IV) were determined simultaneously with direct UV detection at 258 nm. Each peak height was linearly dependent on the concentration of Zr(IV) or Hf(IV) in the range of 5.0x10(-7)-1.0x10(-5) M; a detection limit of 2x10(-7) M was achieved. The utility of the proposed CE method was demonstrated for the simultaneous determination of Zr(IV) and Hf(IV) in natural water samples with satisfactory results.  相似文献   

20.
Treatment of aqueous solution contaminated by uranium and thorium using a new Mannich type resin was studied. Different instrumental techniques such as elemental analysis, FTIR, and thermogravimetric analysis were employed for full characterization of the synthetic resin. Adsorption behavior was studied by batch experiments to determine the optimum conditions for U(VI) and Th(IV) ion removal. The adsorption studies showed the best fit with the second order rate equation and Langmuir model. The adsorption process is endothermic, spontaneous, and of increased disorder. The regeneration of sorbent was carried out using diluted HCl and the reuse of sorbent remains appreciable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号