首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B←N coordination bond can be used to develop polymer electron acceptors for efficient all-polymer solar cells(all-PSCs). Here, we report a new alternating conjugated polymer containing two building blocks based on B←N unit. The polymer exhibits strong light absorption in the visible range, low-lying LUMO/HOMO energy levels and moderate electron mobility. The resulting all-PSC devices exhibit power conversion efficiencies of 1.50%–2.47%.  相似文献   

2.
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(VOC) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs.  相似文献   

3.
The polymer N2200, with its π-conjugated backbone composed of alternating naphthalene diimide(NDI) and bithiophene(DT)units, has been widely used as an acceptor for all-polymer solar cells(all-PSCs) owing to its high electron mobility and suitable ionization potential and electron affinity. Here, we developed two naphthalene diimide derivatives by modifying the molecular geometry of N2200 through the incorporation of a truxene unit as the core and NDI-DTas the branches. These starburst polymers exhibited absorption spectra and molecular orbital energy levels that were comparable to N2200. These copolymers were paired with the wide-bandgap polymer donor PTz BI-O to fabricate all-polymer solar cells(all-PSCs), which displayed impressive power conversion efficiencies up to 8.00%. The improved photovoltaic performances of all-PSCs based on these newly developed starburst acceptors can be ascribed to the combination of increased charge carrier mobilities, reduced bimolecular recombination, and formation of more favorable film morphology. These findings demonstrate that the construction of starburst polymer acceptors is a feasible strategy for the fabrication of high-performance all-PSCs.  相似文献   

4.
The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient n-type polymer thermoelectric materials. Herein, we developed three acceptor-acceptor type organoboron polymers and investigated the effect of backbone configuration on thermoelectric performance. The three polymers are designed based on double B←N bridged bipyridine(BNBP) unit with...  相似文献   

5.
All-polymer solar cells(all-PSCs)trigger enormous commercial applications,and great progress has been made in recent years.However,from small-area devices to large-area modules,the poor adaption of the materials for printing methods and the large efficiency loss are still great challenges.Herein,three novel non-conjugated polymer acceptors(PTH-Y,PTClm-Yand PTClo-Y)are developed for all-PSCs.It can be found that non-conjugated polymer acceptors can effectively minimize the technique and efficiency gaps between small-area spin-coating and large-area blade-printing method,which can facilitate the preparation of large-area flexible device.By directly inheriting the spin-coating condition,the blade-coating processed device based on PTCloY achieves an impressive power conversion efficiency(PCE)of 12.42%,comparable to the spin-coating processed one(12.74%).Such a non-conjugated polymer system also can well tolerate large-scale preparation and flexible substrate.Notable PCE of 11.94%for large-area rigid device and 11.56%for large-area flexible device are obtained,which is the highest value for large-area flexible all-PSCs fabricated by blade-coating.In addition,the non-conjugated PTClo-Y-based devices show excellent thermal stability and mechanical robustness.These results demonstrate that the non-conjugated polymer acceptors are potential candidates for the fabrication of highly-efficient,large-area and robust flexible all-PSCs by printing methods.  相似文献   

6.
The manipulation of the morphology of the active layers is crucial for improving the performance of organic photovoltaic(OPV)devices. In particular, the development of non-fullerene acceptors(NFAs) has led to a large number of new materials with more complex interactions. Therefore, the investigation on the morphology control mechanism is the key aspect in providing guidance for material design and device optimization. In this study, the film morphology optimization using 1,8-diiodooctane(DIO) a...  相似文献   

7.
The power conversion efficiency(PCE) of polymer solar cells(PSCs) has exceeded 19% due to the rapid progress of photoactive organic materials, including conjugated polymer donors and the matched non-fullerene acceptors(NFAs). Due to the high density of oxygen vacancies and the consequent photocatalytic reactivity of ZnO, structure inverted polymer solar cells with the ZnO electron transport layer(ETL)usually suffer poor device photostability. In this work, the eco-friendly glucose(Glu) is found ...  相似文献   

8.
A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were developed. In addition to complementary absorption spectra(300–830 nm) with IT-4 F, the PM6 also has a deep HOMO(the highest occupied molecular) level(-5.50 e V), which will lower the open-circuit voltage(V_(oc)) sacrifice and reduce the E_(loss) of the IT-4 F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4 Fbased PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm~2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4 F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future.  相似文献   

9.
Chiral polymer was synthesized by the polymerization of (R)-6,6'-bistributylstannyl-2,2'-binaphtho-20-crown-6 (M-1) with 1,4-dibromo-2,3-bisbutoxy-naphthyl (M-2) by Pd(PPh3)4 catalyzed Stille coupling reaction. Both monomer and polymer were analyzed by NMR, MS, FT-IR, UV, polarimetry, DSC-TGA, CD, fluorescent spectroscopy and GPC. The major difference between monomer and polymer is that a long wavelength Cotton Effect was observed for the polymer due to its more extended conjugation in the repeating unit and a highly rigid backbone in the polymer chain. Polymer has strong blue fluorescence due to the efficient energy migration from the extended n-electronic structure of the repeating unit of the polymer to the chiral binaphthyl core and is expected to have potential application in the materials of fluorescent sensors and chiral chromatographic packing for resolution of racemic amino acid.  相似文献   

10.
Two polymers containing(E)-2,3-bis(thiophen-2-yl)acrylonitrile(CNTVT) as a donor unit, perylene diimide(PDI) or naphthalene diimide(NDI) as an acceptor unit, are synthesized by the Stille coupling copolymerization, and used as the electron acceptors in the solution-processed organic solar cells(OSCs). Both polymers exhibit broad absorption in the region of 300–850 nm. The LUMO energy levels of the resulted polymers are ca. –3.93 eV and the HOMO energy levels are –5.97 and –5.83 eV. In the binary blend OSCs with PTB7-Th as a donor, PDI polymer yields the power conversion efficiency(PCE) of up to 1.74%, while NDI polymer yields PCE of up to 3.80%.  相似文献   

11.
Molecular ordering within the photoactive layer plays a crucial role in determining the device performance of organic solar cells(OSCs).However,the simultaneous molecular ordering processes of polymer donors and non-fullerene acceptors(NFAs)during solution casting usually bring confinement effect,leading to insufficient structural order of photovoltaic components.Herein,the molecular packing of mINPOIC NFA is effectively formed through a heating induced aggregation strategy,with the aggregation of PBDB-T,which has a strong temperature dependence,is retarded by casting on a preheated substrate to reduce its interference toward m-INPOIC.A sequent thermal annealing treatment is then applied to promote the ordering of PBDB-T and achieve balanced aggregation of both donors and acceptors,resulting in the achievement of a maximum efficiency of 13.9% of PBDB-T:m-INPOIC binary OSCs.This work disentangles the interactions of donor polymer and NFA during the solution casting process and develops a rational strategy to enhance the molecular packing of NFAs to boost device performance.  相似文献   

12.
In organic solar cells(OSCs), the material design on photovoltaic layers and interlayers has significantly contributed to the rapid progress of the device performance. Perylene-diimides(PDIs), owing to their distinct advantages of high electron affinity, high electron mobility and facial chemical modification, are being widely studied in OSCs, especially designed as photovoltaic acceptors and cathode interlayers. In this review, recent progress on those PDI derived photovoltaic materials is syst...  相似文献   

13.
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion. Herein, we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties. Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67. After calcination in nitrogen atmosphere, the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved. The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous) cobalt-oxide deposits appear on the surface of graphitic carbons. The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree, large surface area and the large amount existence of Co–N active sites.  相似文献   

14.
Shao  Xingxin  Dou  Chuandong  Liu  Jun  Wang  Lixiang 《中国科学:化学(英文版)》2019,62(10):1387-1392
The general strategy to construct D-A type conjugated polymers is alternating copolymerization of electron-donating(D)monomer and electron-accepting(A) monomer. In this article, we report a new strategy to develop D-A type conjugated polymers, i.e. first fuse the D and A units into a polycyclic structure to produce a building block and then polymerize the building block with another unit. We develop a new building block with ladder structure based on B←N unit, B←N bridged dipyridylbenzene(BNDPB). In the skeleton of BNDPB, one diamine-substituted phenylene ring(D unit) and two B←N-linked pyridyl rings(A unit) are fused together to produce the polycyclic structure. Owning to the presence of intramolecular D-A character, the building block itself exhibits narrow bandgap of 1.74 eV. The conjugated polymers based on BNDPB show unique electronic structures, i.e. localized HOMOs and delocalized LUMOs, which are rarely observed for conventional D-A conjugated polymers. The polymers exhibit smaller bandgap than that of the building block BNDPB and display near-infrared(NIR)light absorption(λabs=ca. 700 nm). This study thus provides not only a new strategy to design D-A conjugated polymers but also a new kind of building block with narrow bandgap.  相似文献   

15.
The diffusion of constituent materials at interfaces is one of the key factors for device performance and stability.In this work,the effect of interfacial diffusion of a classic interfacial material PFN on device performance of polymer solar cells was studied quantitatively by doping PFN into active layer based on P3HT:PC61BM blend.The PCEs of devices with 550 ppm PFN decrease to half compared to those of the control devices without PFN,which are mainly attributed to the decrease of short-circuit current(Jsc)and fill factor(FF).Advanced analyses of equivalent circuit,absorption spectra,and atomic force microscopy indicates that the presence of PFN in the active layer increases the leakage current,decreases the aggregation of P3HT,and reduces the phase separation.This research reveals the physical mechanism of interfacial diffusion in device performance and provides a basis for further improving the performance and stability of PSCs.  相似文献   

16.
Chiral polymer was synthesized by the polymerization of (R)-6,6'-bistributylstannyl-2,2'-binaphtho-20-crown-6 (M-1) with 1,4-dibromo-2,3-bisbutoxy-naphthyl (M-2) by Pd(PPhs)4 catalyzed Stille coupling reaction. Both monomer and polymer were analyzed by NMR, MS, FT-IR, UV, polarimetry, DSC-TGA, CD, fluorescent spectroscopy and GPC. The major difference between monomer and polymer is that a long wavelength Cotton Effect was observed for the polymer due to its more extended conjugation in the repeating unit and a highly rigid backbone in the polymer chain. Polymer has strong blue fluorescence due to the efficient energy migration from the extended n-electronic structure of the repeating unit of the polymer to the chiral binaphthyl core and is expected to have potential application in the materials of fluorescent sensors and chiral chromatographic packing for resolution ofracemic amino acid.  相似文献   

17.
Polymer solar cells(PSCs) were fabricated by combining a diketopyrrolopyrrole-based terpolymer(PTBT-HTID-DPP) as the electron donor, and [6,6]-phenyl C61 butyric acid methyl ester(PC61BM) as the electron acceptor, and the power conversion efficiency(PCE) of 4.31% has been achieved under AM 1.5 G(100 m W cm-2) illumination condition via optimizing the polymer/PC61BM ratio, the variety of solvent and the spin-coating speed. The impact of the spin-coating speed on the photovoltaic performance of the PSCs has been investigated by revealing the effects of the spin-coating speed on the morphology and the absorption spectra of the polymer/PC61BM blend films. When the thickness of the blend films are adjusted by spin-coating a fixed concentration with different spin-coating speeds, the blend film prepared at a lower spin-coating speed shows a stronger absorption per unit thickness, and the correspond device shows higher IPCE value in the longer-wavelength region. Under the conditions of similar thickness, the blend film prepared at a lower spin-coating speed forms a more uniform microphase separation and smaller domain size which leads to a higher absorption intensity per unit thickness of the blend film in long wavenumber band, a larger short-circuit current density(Jsc) and a higher power conversion efficiency(PCE) of the PSC device. Noteworthily, it was found that spin-coating speed is not only a way to control the thickness of active layer but also an influencing factor on morphology and photovoltaic performance for the diketopyrrolopyrrole-based terpolymer.  相似文献   

18.
Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs), both fluorine-and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies(PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors(PBDB-T-2 F and PBDB-T-2 Cl) and acceptors(IT-4 F and IT-4 Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%–14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.  相似文献   

19.
Six kinds of polymer ligands, supported on SiO_2, containing coordinating atoms P, S and N respectively, have been synthesized. The Ru(Ⅲ)-Co(Ⅱ) bimetallic complexes of these polymer ligands have been obtained and examined as catalysts for the hydroformylation of cyclohexene. The effects of reaction temperature, pressure and Co/Ru ratio etc. on the activities of catalysts were investigated in detail. The catalysts are all polymer-noncarbonyl-metal complexes, easily to be prepared, active and stable. From the experimental results it can be suggested that under reaction conditions such polymer-noncarbonyl-metal complexes convert "in situ" to polymer-carbonyl-metal complexes, thus become active catalysts. The course of this conversion is supposed as a preliminary approach.  相似文献   

20.
Copolymerization is a commonly employed method for optimizing the properties of polymer materials. Incorporating ether segments into polyesters main chain to obtain polyether-polyester copolymers is an effective strategy to realize the integration of multiple properties of polyester and polyether, and to develop more high-performance, multi-purpose polymer materials. Herein, the synthesis of poly(ether-ester)s is accessible by employing the biphenyl-linked heterodinuclear salen Cr-Al complex in the presence of PPNCl for the copolymerization of epoxides and ε-caprolactone(CL). Monitoring the copolymerization process reveals that catalyst 1 exhibited good performance for the copolymerization of epoxides and CL, affording copolymers with a gradient sequence structure. The dynamic thermomechanical analysis(DMA) study indicates the obtained poly(ether-ester)s possess enhanced flexibility compared with the block copolymers or blend of PPO and PCL homopolymers with the same ratio. This study provides a theoretical basis for the preparation of high-performance polymer materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号