首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

2.
The present study describes chelation of Pb(II) with ascorbic acid and formation of a charge-transfer sensitive ion-pair in the presence of Rhodamine 6G at pH 5.5, and then its extraction to the micellar phase of non-ionic surfactant, PONPE 7.5 by an ultrasound-assisted cloud point extraction method before analysis by FAAS. The various variables affecting ion-pair formation and extraction efficiency were studied and optimised. Under the optimised conditions, the good linear relationships in the ranges of 0.4–150 μg L?1 and 0.8–120 μg L?1 for solvent-based calibration and matrix-matched calibration curves, respectively, were achieved with a pre-concentration factor of 71.4 from pre-concentration of 50-mL sample. Moreover, the limits of detection with good sensitivity enhancements of 124 and 114.5 were 0.13 and 0.24 μg L?1, respectively, while the intra-day and inter-day precision (as RSD%, for five replicate measurements of 5 and 100 μg L?1 in the same day and three succeed days) were in range of 2.8–5.4% and 3.7–6.3%, respectively. The matrix effect on triplicate determination of 50 µg L?1 Pb(II) was also investigated. The accuracy of the method was statistically verified by the analysis of two certified reference materials (CRMs) after digestion with acid mixtures (HNO3-H2O2-HF and HNO3-H2O2) and dilution at suitable ratios. It has been observed that there is statistically not a significant difference between the certified- and found-values. The accuracy was also controlled using the pre-treated sample solutions spiked at different concentration levels, and the good spiked recoveries were obtained in range of 90–102.8%. The method was successfully applied to the determination of trace amounts of lead in water and food matrices with satisfactory results.  相似文献   

3.
The development of a solid-phase extraction (SPE) procedure for the pre-concentration of trace amounts of Pb2+ ion on 2-furan-2-yl-1-furan-2-ylmethyl-1H-benzoimidazole loaded on activated carbon modified with silver nanoparticles (L-AC-Ag-NP) was presented. The metal ion retained on the sorbent was quantitatively determined via complexation with the ligand. The complexed metal ion was efficiently eluted using 10 mL of 4 mol L?1 sulphuric acid in 10 w/v% acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ion were optimised. Using the optimised parameters, the linear response of the SPE method for Pb2+ ion were in the ranges of 0.2–160 µg L?1, and the detection limit for Pb2+ ion was 0.034 µg L?1. The proposed method exhibits a pre-concentration factor (PF) of 80 and an enhancement factor of 30 for Pb2+ ion. The presented results demonstrate the successful application of the proposed method for the determination of Pb2+ ion in some real samples with high recoveries (>93%) and reasonable relative standard deviation (RSD < 2%).  相似文献   

4.
Extraction, pre-concentration and determination of trace amounts of mercury ions from water samples were investigated by magnetic solid phase extraction (MSPE) method using Fe3O4 nanoparticles decorated with polythionine as an adsorbent. A simple chemical synthesis by catalytic reaction of thionine in the presence of FeCl3 and hydrogen peroxide was used for preparation of the magnetic sorbent. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer analysis and Fourier transform infrared spectroscopy were used to characterise the adsorbent. Mercury ions were determined by cold vapour atomic absorption spectrometry. The parameters for MSPE procedure, such as pH of the extraction solution, adsorption time, weight adsorbent, elution conditions (type, concentration and volume of the eluent), volume of the sample solution and effects of coexisting ions were investigated. The obtained optimal conditions were: sample pH of 4; sorbent amount of 4 mg; sorption time of 20 min; elution solvent of HNO3 (0.3 mol L?1)/thiourea (2% w/v) with volume of 2 mL, and breakthrough volume of 400 mL. A good linearity in the concentration range of 0.025–40 µg L?1 (R2 > 0.999) with the pre-concentration factor of 198 was obtained. The limits of detection and quantification were achieved as 0.008 and 0.025 µg L?1, respectively. Furthermore, sea and river water samples were analysed and good recoveries (97.1–99.6%) were obtained.  相似文献   

5.
In this paper, a novel molecularly imprinted polymer coated stir bar has been used to selectively extract naphthalene sulfonates (NSs) directly from seawater sample. 1-Naphthalene sulfonic acid (1-NS) was used as template molecule. The effects of different parameters were optimized on the extraction efficiency and the optimum conditions were established as: the absorption and desorption times were fixed, respectively, at 10 and 15 min, stirring speed was 700 rpm, pH was adjusted to 4.1, amount of NaCl was 1 mol L?1 and extraction process was performed at a temperature of 50 °C. The linear ranges were 2–250 µg L?1 for 3,6-NDS-1-OH (1-naphthol-3,6-disulfonic acid), 4–250 µg L?1 for 2-NS (2-naphthalene sulfonate) and 3–250 µg L?1 for 1-NS. The detection limits were within the range of 0.32–0.95 µg L?1. Under optimum conditions, the detection limits of the NSs were 0.84, 0.95 and 0.32 µg L?1 with the enrichment factor of 117-, 41- and 77-fold for 2-NS, 1-NS, and 6-NDS-1-OH, respectively. The repeatability of the method was satisfactory (0.53 ≤ RSD ≤6.0 %, n = 10). The method has been successfully applied for the analysis of trace amounts of three naphthalene sulfonates in seawater of Chabahar Bay.  相似文献   

6.
《Analytical letters》2012,45(16):2593-2605
A method was developed for the determination of vitamin B12 based on the enhancement of cobalt (II) on the chemiluminescence (CL) reaction between luminol and percarbonate (powerful source of hydrogen peroxide). The release of cobalt (II) from the vitamin B12 was reached by a simple and fast microwave digestion (20 s microwave digestion time and a mix of nitric acid and hydrogen peroxide). A charge coupled device (CCD) photodetector, directly connected to the cell, coupled with a simple continuous flow system was used to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction.

The optima experimental conditions were established: 8.0 m mol L?1 luminol in a 0.075 mol L?1 carbonate buffer (pH 10.0) and 0.15 mol L?1 sodium percarbonate, in addition to others experimental parameters as 0.33 mL s?1 flow rate and 2 s integration time, were the experimental conditions which proportionate the optimum CL emission intensity. The emission data were best fitted with a second-order calibration graph over the cobalt (II) concentration range from 4.00 to 300 µ g L?1 (r2 = 0.9990), with a detection limit of 0.42 µ g L?1. The proposed method was successfully applied to the determination of vitamin B12 in pharmaceuticals.  相似文献   

7.
In this work, magnetic solid-phase extraction based on sodium dodecyl sulfate-coated Fe3O4 nanoparticles has been successfully applied for extraction and preconcentration of trace amounts of nystatin from water and vaccine samples prior to high-performance liquid chromatography–ultraviolet detection. Various experimental parameters affecting extraction and recovery of the analyte, such as the amount of sodium dodecyl sulfate, pH of the sample solution, salt concentration, extraction time, sample volume and desorption conditions, were systematically studied and optimized. Under optimized conditions, nystatin was quantitatively extracted. Proper linear range with good coefficient of determination, (R 2 > 0.99) and limit of detection and quantification (based on signal-to-noise ratios of 3 and 10) of 2.0 and 5.0 µg L?1, over the investigated concentration range (5–700 µg L?1), were obtained, respectively. The intra-day and inter-day relative standard deviations at 50 µg L?1 level of NYS were 1.4 and 4.5% based on six replicate determinations. The accuracy of the method was evaluated by recovery measurements on spiked samples. Suitable recoveries of 96–102 and 26–44% were achieved (at spiked levels of 50, 300 and 500 µg L?1) for water and vaccine samples, respectively.  相似文献   

8.
A flow injection-based electrochemical detection system coupled to a solid-phase extraction column was developed for the determination of trace amounts of plutonium in low-active liquid wastes from spent nuclear-fuel reprocessing plants. The oxidation state of plutonium in a sample solution was adjusted to Pu(VI) by the addition of silver(II) oxide. A sample solution was made up in 3 mol L?1 HNO3 and loaded onto a column packed with UTEVA® with 3 mol L?1 HNO3 as the carrier. Plutonium(VI) was adsorbed onto the resin, and interfering elements were removed by rinsing the column with 3 mol L?1 HNO3. Subsequently, the adsorbed Pu(VI) was eluted with 0.01 mol L?1 HNO3, and then introduced directly into the flow-through electrolysis cell with boron-doped diamond electrode. The eluted Pu(VI) was detected by an electrochemical amperometric method at a working potential of 0.1 V (vs. Ag/AgCl). The current produced on reduction of Pu(VI) was continuously monitored and recorded. The plutonium concentration was calculated from the relationship between the peak area and concentration of plutonium. The relative standard deviation of ten analyses was 1.1% for a plutonium solution of 25 μg L?1 containing 50 ng of Pu. The detection limit calculated from three-times the standard deviation was 0.82 μg L?1 (1.6 ng of Pu).  相似文献   

9.
A magnetic solid-phase extraction (MSPE) method coupled to high performance liquid chromatography with UV (HPLC-UV) was proposed for the determination of organophosphorus pesticides (OPPs) at trace levels in environmental water samples. The ternary nanocomposite of graphene-carbon nanotube-Fe3O4 (G-CNT-Fe3O4) has been synthesised via a simple solvothermal process and the resultant material was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Significant factors that affect the extraction efficiency, such as amount of magnetic nanocomposite, extraction time, ionic strength, solution pH and desorption conditions were carefully investigated. The results demonstrated that the proposed method had a wide dynamic linear range (0.005–200 ng mL?1), good linearity (R2 = 0.9955–0.9996) and low detection limits (1.4–11 pg mL?1). High enrichment factors were achieved ranging from 930 to 1510. The results show that the developed method is suitable for trace level monitoring of OPPs in environmental water samples.  相似文献   

10.
《Analytical letters》2012,45(7):989-999
Abstract

A new method for flow-injection analysis (FIA) for the determination of penicillins based on the extraction and spectrophotometric determination of ion associates with selected thiazine dyes (methylene blue, azure A, and azure B) is proposed. The reaction conditions (cdye = 2 × 10?4 mol l?1, cKCl = 1 mol l?1, pH ? 6, λ = 635 nm) were found. The factorial design has been carried out to determine the optimum flow conditions. A wide linear dynamic range of calibration curves (5.1–700 µg ml?1 for penicillin V with all dyes, R = 0.9985) and good repeatability (e.g., relative standard deviation [RSD] = 4.6–0.6% in this concentration range for the reaction with azure B) were found. The detection limit for penicillin V is 1.5 µg ml?1, and the determination limit is 5.1 µg ml?1. The maximum analysis rate is 35 samples per h. The practical samples of pharmaceutics were tested. There are no interferences from the additives in pharmaceutics.  相似文献   

11.
A new method for solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed using 1,5-diphenylcarbazide doped magnetic Fe3O4 nanoparticles as extractant. The surface treatment did not result in the phase change of Fe3O4. Various factors which influenced the recovery of the analyte were investigated using model solutions and batch equilibrium technique. The maximum adsorption occurred at pH?>?6, and equilibrium was achieved within 5 min. Without filtration or centrifugation, these mercury loaded nanoparticles could be separated easily from the aqueous solution by simply applying an external magnetic field. At optimal conditions, the maximum adsorption capacity was 220 μmol g?1. The mercury ions can be eluted from the composite magnetic particles using 0.5 mol L?1 HNO3 as a desorption reagent. The detection limit of the method (3σ) was 0.16 μg L?1 for cold vapor atomic absorption spectrometry, and the relative standard deviation was 2.2%. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The method was applied to the preconcentration and determination of trace inorganic mercury(II) in natural water and plant samples with satisfactory results.  相似文献   

12.
《Analytical letters》2012,45(2):356-366
A fast, simple and sensitive method for determining of lead in hair dyes using graphite furnace atomic absorption spectrometry with slurry sampling was developed. Multivariate optimization was used to establish optimal analytical parameters through a fractional factorial and a central composite design. The samples were submitted for direct analysis without prior digestion and were diluted in 2.5% v/v HNO3 and 1.5% v/v H2O2. Palladium (chemical modifier) and rhodium (permanent modifier) were selected from several potential modifiers. The optimal conditions were a pyrolysis time of 10 s (liquid and dust dyes) 20 s (cream dyes), a pyrolysis temperature of 789°C (liquid dyes) or 750°C (cream and dust dyes) and an atomization temperature of 1800°C for all dyes. Under optimum conditions, the calibration graph is linear in the 1.50–50.0 µg L?1 concentration range, with a detection limit of 0.33, 0.44, and 0.39 µg L?1 for liquid, dust, and cream hair dyes, respectively. The relative standard deviation ranged from 1.63 to 4.56%. The recovery rate ranged from 85 to 108%, and no significant differences were found between the results obtained with the proposed method and the microwave decomposition analysis method of real samples. The concentration ranges obtained for lead in the hair dyes samples were 1.00–11.3 µg L?1 for liquid dyes, 14.0–100 µg kg?1 for dust dyes, and 19.9–187 µg kg?1 for cream dyes.  相似文献   

13.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

14.
《Analytical letters》2012,45(9):1086-1097
A new automated method is reported for the determination of H2O2 in real samples. The method is based on the quenching effect of the analyte on the reaction between tris(2-carboxyethyl)phosphine (TCEP) and Ellman's reagent (DTNB). All necessary steps were accomplished under flow conditions using a hybrid sequential injection (SI)/flow injection (FI) setup. The sensitivity was enhanced by applying a stopped-flow step (120 s) in order to promote the reaction between H2O2 and TCEP. The proposed analytical protocol was validated for linearity (10–75 µmol L?1), limits of detection (c L = 1.0 µmol L?1), quantitation (c Q = 3.3 µmol L?1), precision (s r = 1.3–1.7%), accuracy, and selectivity. It was then applied successfully to the analysis of H2O2 in spiked rainwater and snow samples.  相似文献   

15.
《Analytical letters》2012,45(13):2524-2543
Abstract

Silica gel was modified by thiosalicylic acid via homogeneous routes to obtain immobilized silica gel sorbent (TSA‐immobilized silica gel). This new sorbent was characterized using variety of physical chemistry techniques including, high resolution solid state 13C and 29Si CP/MAS NMR, X‐ray photoelectron spectroscopy (XPS), thermal analysis (TGA and DTA), elemental analysis, and BET surface analysis as well as infrared spectroscopy (FTIR). New support was used for the selective extraction and concentration of lead ions by silica gel modified with thiosalicylic acid, as a highly selective and stable reagent, from aquatic samples and its determination with FAAS. Lead ions can be desorbed with 4 mol dm?3 HNO3. The sorption capacity for lead ions are found in the range of 64.40 to 69.90 µmol g?1 of chelating matrix. Tolerance limits for electrolytes and some trace metals in the sorption of lead is reported. Preconcentration factor was found as 150 for Pb(II). The lead in drinking water, mineral water, tap water, and fruit juice was quantitatively recovered with a relative standard deviation lower than 1.50%. A detection limit of the method for lead ions was found as 3.7 µg l?1.  相似文献   

16.
The properties and extraction for [Ni(NH3)6]2+ of anionic aqueous two-phase systems (ATPS-a) that formed in mixtures of cetyltrimethylammonium bromide (CTAB) and excess sodium dodecyl sulfate (SDS) aqueous solutions were investigated. The results showed that the properties and extraction effects were strongly affected by the surfactant concentration, the temperature of system, and the mole fraction of surfactants. The increase of temperature induces narrower phase region and larger phase volume ratio. In addition, [Ni(NH3)6]2+ was extracted into the surfactant-rich phase with higher distribution coefficient when the liquid crystal had the birefringent properties. Moreover, the distribution coefficient can be improved through reducing the concentration of surfactant from 0.15 to 0.05 mol · L?1 or increasing mole fraction of CTAB from 21.9% to 23.1%. The results showed that ATPS of cationic–anionic surfactants was efficient for [Ni(NH3)6]2+ extraction with distribution coefficients of 13.5 when the total surfactant concentration was 0.05 mol · L?1, mole fraction of CTAB was 21%, and temperature was 34°C.  相似文献   

17.
An SPE-HPTLC method for simultaneous identification and quantification of seven pharmaceuticals in production wastewater was optimized and validated. The studied compounds were enrofloxacine, oxytetracycline, trimethoprim, sulfamethazine, sulfadiazine, sulfaguanidine and penicillin G/procaine. The method involves solid-phase extraction on hydrophilic-lipophilic balance cartridges with methanol and HPTLC analysis of extracts on CN modified chromatographic plates followed by videodensitometry at 254 and 366 nm. Optimization of chromatographic separation was performed by systematic variation of the mobile phase composition using genetic algorithm approach and the optimum mobile phase composition for TLC separation was 0.05 M H2C2O4:methanol = 0.81:0.19 (v/v). Linearity of the method was demonstrated in the ranges from 1.5 to 15.0 μg L−1 for enrofloxacine, 100–500 μg L−1 for oxytetracycline, 150–600 μg L−1 for trimethoprim, 300–1100 μg L−1 for sulfaguanidine and 100–400 μg L−1 for sulfamethazine, sulfadiazine and penicillin G/procaine with coefficients of determination higher than 0.991. Mean recoveries ranged from 74.6 to 117.1% and 55.1 to 108.0% for wellspring water and production wastewater, respectively. Only sulfaguanidine showed lower results. The described method has been applied to the determination of pharmaceuticals in wastewater samples from pharmaceutical industry.  相似文献   

18.
《Analytical letters》2012,45(3):579-587
Abstract

This paper reports on the synthesis of a new chromogenic reagent, 2‐carboxyl‐1‐naphthalthiorhodanine (CNTR). A high sensitive, selective, and rapid method for the determination of gold based on the rapid reaction of gold with CNTR and the solid phase extraction of the colored chelate with a reversed phase polymer‐based C18 cartridge was developed. In the presence of 0.05–0.5 mol L?1 of phosphoric acid solution and emulsifier‐OP medium, CNTR reacts with gold to form a red chelate of a molar ratio 1∶3 (gold to CNTR). This chelate was enriched by the solid phase extraction with a polymer‐based C18 cartridge and the retained chelate was eluted from the cartridge with dimethyl formamide (DMF). The enrichment factor of 100 was achieved. In the DMF medium, the molar absorptivity of the chelate is 1.35×105 L · mol?1 · cm?1 at 540 nm. Beer's law is obeyed in the range of 0.01~2 µg mL?1 in the measured solution. The relative standard deviation for 11 replicates sample of 0.5 µg L?1 level is 2.05%. The detection limit, based on three times the standard deviation is 0.02 µg L?1 in the original sample. This method was applied to the determination of gold in water and ore with good results.  相似文献   

19.
In the existing study, a new vortex-assisted cloud point extraction (VA-CPE) method was developed for determination of low levels of thiosulfate in environmental waters at 632 nm by spectrophotometry. The method is selectively based on charge-transfer-sensitive ion-pair complex formation of Ag(S2O3)2 3?, which is produced by the reaction of thiosulfate with excess Ag+ ions with toluidine blue (3-amino-7-dimethylamino-2-methylphenazathionium chloride, TB+) and then its extraction into micellar phase of polyethylene glycol 4-tert-octylphenyl ether (Triton X-45) in presence of Na2SO4 as salting-out agent at pH 7.0. All the factors affecting complex formation and VA-CPE efficiency were optimized in detail. Under the optimized conditions, the linear calibration curves for thiosulfate were in the range of 0.2–120 and 5–180 µg L?1 with sensitivity improvement of 81-folds and 15-folds, respectively, as a result of efficient mass transfer obtained by CPE with and without vortex, while it changed in the range of 260–3600 µg L?1 without preconcentration at 642 nm. The limits of detection and quantification of the method for VA-CPE were found to be 0.05 and 0.22 µg L?1, respectively. The precision (expressed as the percent relative standard deviation) was in range of 2.5–4.8% (5, 10 and 25 µg L?1, n: 5). The method accuracy was validated by comparing the results to those of an independent 5,5′-dithiobis(2-aminobenzoic acid) (DTNB) method as well as recovery studies from spiked samples. It has been observed that the results are statistically in a good agreement with those obtained by DTNB method. Finally, the method developed was successfully applied to the preconcentration and determination of trace thiosulfate from environmental waters.  相似文献   

20.
Fe3O4-SiO2-C18 paramagnetic nanoparticles have been synthesised and used as magnetic solid-phase extraction (MSPE) sorbent for the extraction of Zineb from agricultural aqueous samples under ultrasonic condition and quantified through a first-derivative spectrophotometric method. The produced magnetic nanoparticles were characterised by using scanning electron microscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and zeta potential reader. The Fe3O4-SiO2-C18 paramagnetic nanoparticles had spherical structures with diameters in the range of 198–201 nm. Further, MSPE was performed by dispersion of Fe3O4-SiO2-C18 paramagnetic nanoparticles in a buffered aqueous solution accompanied by sonication. Next, the sorbents were accumulated by applying an external magnetic field and were washed with 4-(2-pyridylazo) resorcinol-dimethyl sulfoxide solution, for the purpose of desorbing the analyte. The extraction conditions (sample pH, washing and elution solutions, amount of sorbents, time of extraction, sample volume and effect of diverse ions), as well as Zineb-PAR first-order derivative spectra, were also evaluated. The calibration curve of the method was linear in the concentration range of 0.055–24.3 mg L?1 with a correlation coefficient of 0.991. The limit of detection and limit of quantification values were 0.022 and 0.055 mg L?1, respectively. The precision of the method for 0.27 mg L?1 solution of the analyte was found to be less than 3.2%. The recoveries of three different concentrations (0.27, 1.37 and 13.7 mg L?1) obtained 98.3%, 98.5% and 96.0%, respectively. The proposed Fe3O4-SiO2-C18 paramagnetic nanoparticles were found to have the capability of reusing for 7.0 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号