首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The dissipation dynamics and final residues of flutriafol on tobacco plant and soil were studied under field conditions. The residues of flutriafol in soil, green tobacco leaves and cured tobacco leaves were extracted by ultrasound-assisted extraction, cleaned up by dispersive solid-phase extraction and detected by liquid chromatography with tandem mass spectrometry. The limits of detection of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.006, 0.033 and 0.033 mg·kg?1, respectively. The limits of quantification of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.02, 0.1 and 0.1 mg·kg?1, respectively. Recoveries were 72.9–102% with relative standard deviations of less than 12% in soil and tobacco matrix. For field experiments, the half-lives of flutriafol in soil and green tobacco leaves were 9.2–11.5 and 9.5–11.1 days, respectively. At harvest, the final residue levels of flutriafol in cured tobacco leaves collected 21 days after one application at the recommended dosage were below 2.0 mg/kg. The maximum residue limit maximum residue limit (MRL) for flutriafol in tobacco has not yet been established in any countries. The data could help the Chinese Government to establish the MRL of flutriafol in tobacco and provide guidance on the proper use of flutriafol.  相似文献   

2.
A high-performance liquid chromatography with ultraviolet (HPLC-UV) detection method after derivatisation was developed for the first time for the novel fungicide zinc thiazole residue in tobacco samples. Field trials in two different locations were conducted to investigate the dissipation and residue of zinc thiazole in tobacco leaves and soil. The average recoveries of zinc thiazole were in the range of 82.5%–93.9% with relative standard deviations (RSDs) of 1.2%–9.1%. The zinc thiazole showed a rapid dissipation rate in fresh tobacco leaves with the half-lives of 1.1–1.6 days. The terminal residues of zinc thiazole in cured tobacco leaves and soil were 2.8–28.0 mg kg?1and <0.05 mg kg?1, respectively. The results could be used to establish the maximum residue limits (MRLs) and provide guidance for the scientific use of zinc thiazole in agriculture.  相似文献   

3.
Two independent field trials were performed in Guizhou and Hunan, China in 2013 to investigate the dissipation and residue levels of saisentong in tobacco and soil. A novel and accurate method using high-performance liquid chromatography with diode array detection was developed and validated to determine saisentong levels in tobacco and soil. The average recovery of saisentong at fortification levels of 0.5, 2.5, 5.0 and 50.0 mg kg?1 in fresh tobacco ranged from 75.92 to 107.40% with a relative standard deviation (RSD) of 0.94 to 7.55%, that at fortification levels of 0.5, 2.0 and 5.0 mg kg?1 in tobacco powder ranged from 74.96 to 94.43% with a relative standard deviation (RSD) of 4.38 to 8.14%, and that at fortification levels of 0.1, 0.5 and 5.0 mg kg?1 in soil ranged from 86.90 to 100.0% with an RSD of 1.38 to 4.62%. The limit of detection (LOD) of saisentong was 0.15 mg?kg?1 in tobacco and 0.03 mg kg?1 in soil, and the limit of quantification (LOQ) was 0.5 mg kg?1 in tobacco and 0.1 mg kg?1 in soil, respectively. For field experiments, the half-lives of saisentong in tobacco from Guizhou and Hunan were 5.9 and 1.6 days, respectively; those in soil were 14.7 and 12.0 days, respectively. The results suggest that the saisentong dissipation curves followed the first-order kinetic. The terminal residues of saisengtong in tobacco ranged from 0.5 to 9.39 mg kg?1 at pre-harvest intervals (PHI) of 7, 14 and 21 days.  相似文献   

4.
Residue dissipation of hexaconazole and isoprothiolane in the rice field ecosystem was determined by gas chromatography coupled with electron capture detector. Hexaconazole and isoprothiolane (33% microemulsion) were applied at two dosages, 396 g a.i. ha–1 (the recommended dosage) and 594 g a.i. ha–1 (1.5 times the recommended dosage) in the experimental fields in Guizhou, Hunan and Heilongjiang provinces, China, during 2011–2012. The limits of detection and limits of quantification in brown rice were 0.006 and 0.02 mg kg–1 for hexaconazole, 0.0072 and 0.024 mg kg–1 for isoprothiolane, respectively, and they were much below the maximum residue limits (MRLs, 0.1 mg kg–1 for hexaconazole and 1.0 mg kg–1 for isoprothiolane) set by China. Average recoveries of hexaconazole in water, soil, rice plants and brown rice ranged from 77.3% to 93.8% and for isoprothiolane ranged from 78.1% to 99.9% with relative standard deviations < 10%. The results showed that during harvest, the terminal residue levels of hexaconazole and isoprothiolane in brown rice samples were well below the MRLs of China following the interval of 7 days after last application. Therefore, a dosage of 396 g a.i. ha–1 was recommended, which could be considered as safe to human beings.  相似文献   

5.
The phyto-accumulation efficacy of selenium (Se) from soil by chickpea plant is reported. Chickpea plants were grown in soil having different concentrations (1–4 mg kg?1) of Se. Samples of soil and different parts of chickpea plants in Se rich soil were analyzed for determination of Se concentrations by instrumental neutron activation analysis (INAA). Samples were irradiated in self-serve facility of CIRUS reactor, BARC, Mumbai at a neutron flux of the order of 1013 cm?2 s?1. The gamma activity at 264.7 keV of 75Se (119.8 d) was measured using a 45% relative efficiency HPGe detector coupled to MCA. Dependence of Se distribution in soil and plants on its spiking concentration was evaluated in this work. The Se concentrations determined in plant parts grown in control soil and in soil spiked with Se (4 mg kg?1) are in the range of 0.6–0.8 and 65–68 mg kg?1 respectively.  相似文献   

6.
A field experiment was conducted to evaluate clofentezine residue levels and dissipation trend in tangerine and soil for the safe application of clofentezine. A modified QuEChERS-HPLC-UVD method was developed to analyse clofentezine in tangerine and soil. Tangerine samples were homogenised and extracted by acetonitrile and then cleaned up with dispersive solid phase extraction (dSPE) by primary and secondary amine (PSA) and C18. Clofentezine residue was determined by high-performance liquid chromatography (HPLC) with a UV detector (UVD) at the wavelength of 268 nm. The presented method achieved the good linear relationship within the range from 0.05 to 5.0 mg kg?1 for clofentezine (R2 > 0.998). At the fortification levels of 0.05, 0.50 and 1.00 mg kg?1 in tangerine pulp, tangerine peel and soil, recoveries ranged from 75.9% to 117.7% with relative standard deviations (RSD) less than 8.2%. In the supervised field trials, the half-lives of clofentezine in tangerine and soil were approximately 11.3 and 8.6 days, respectively. At pre-harvest interval of 21 days, the residue of clofentezine in tangerine was below the maximum residue limits (MRL) (0.5 mg kg?1). Clofentezine (Water Dispersible Granule, 80%) was recommended to be sprayed twice and the recommended dosage ranged from 250 to 375 mg kg?1.  相似文献   

7.
《Analytical letters》2012,45(12):2095-2103
Titanium was determined in nano-titanium(IV) oxide food packaging by microwave digestion with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Microwave digestion was optimized using different acid combinations. Both spectrometry techniques showed good reproducibility, repeatability, and recovery. For ICP-AES, the limit of detection was 5.0 mg kg?1, the linear dynamic range was 100–5000 µ g L?1, the average recoveries for blank samples spiked with titanium were between 94.7% and 100.1%, and the relative standard deviations were from 2.1% to 7.1%. By ICP-MS, the limit of detection was 0.3 mg kg?1, the linear dynamic range was 0.5–200 µ g L?1, the recoveries were 88.4%–96.3%, and the relative standard deviations were 6.3%–7.4%. These results indicated that methods were effective for the determination of titanium in food packaging.  相似文献   

8.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method for the analysis of triallate residue in wheat and soil was developed and validated. Multi-walled carbon nanotubes were used as clean-up sorbent. The residual levels and dissipation rates of triallate in wheat and soil were determined by liquid chromatography–tandem mass spectrometry. The limit of quantification was established as 0.01, 0.02 and 0.05 mg kg?1 for soil, wheat and wheat plant samples, respectively. The average recoveries of triallate ranged from 77% to 108% at fortified levels of 0.01–0.5 mg kg?1 with relative standard deviations of 3.0–8.4% (n = 5). From residue trials at three geographical experimental plots in China, the results showed that the half-lives of triallate in soils were 1.13–1.63 days. For trials applied according to the label recommendation, the final residues of triallate in wheat at harvest time were all below 0.05 mg kg?1 (the maximum residue levels of China, Japan, Korea and the US).  相似文献   

9.
A novel method for the determination of melamine residue in food was developed using solid-phase extraction and capillary zone electrophoresis with UV detection. Spiked samples were extracted with 1% trichloroacetic acid while 0.03 g sodium deoxycholate was used to precipitate protein in the real samples. After centrifuging and clean-up by solid-phase extraction cartridge, the extract was directly analyzed by CZE–UV. The method was validated and good results were obtained with respect to precision, repeatability and spiked recovery. The limit of detection for melamine varied between 0.25 and 0.5 mg kg?1. The proposed method was successfully applied for the analysis of melamine in food with total recoveries ranging from 94 to 102% in the spiked range of 0.5–5 mg kg?1, and the relative standard deviations were between 1.5 and 4.1%.  相似文献   

10.
Persistence and dissipation of fluopicolide and propamocarb were studied on cabbage and soil as per good agricultural practices over a period of 2 years. A modified QuEChERS analytical method in conjunction with gas chromatography (GC) and GC–mass spectrometry was used for analysis of fluopicolide and its metabolite, 2,6-dichlorobenzamide, and propamocarb in cabbage and soil. The results of the method validation were satisfactory with recoveries within 74.5–100.81% and relative standard deviations 4.8–13.9% (n = 6). The limit of detection (LOD) and limit of quantification (LOQ) of both fluopicolide and 2,6-dichlorobenzamide were 0.003 µg mL?1 and 0.01 mg kg?1, respectively. The LOD and LOQ of propamocarb were 0.03 µg mL?1 and 0.1 mg kg?1, respectively. During 2013, the initial residue deposits of fluopicolide on cabbage were 0.60 and 1.48 mg kg?1 from treatments at the standard and double doses of 100 and 200 g a.i. ha?1 which dissipated with the half-life of 3.4 and 3.7 days. During 2014, the residues were 0.49 and 1.13 mg kg?1 which dissipated with the half-life of 4.2 and 5.1 days. Propamocarb residues on cabbage were 5.36 and 12.58 mg kg?1 in the first study (2013) and 4.85 and 10.26 mg kg?1 in the second study (2014) from treatments at the standard and double doses of 1000 and 2000 g a.i. ha?1, respectively. The residues dissipated with the half-life of 4–5.5 days. The preharvest interval, the time required for fluopicolide + propamocarb residues to dissipate below the maximum residue limits (notified by EU) at the standard dose, was 11.8 and 14 days during 2013 and 2014. Residue of 2,6-dichlorobenzamide was always <LOQ in cabbage. Residues of fluopicolide, 2,6-dichlorobenzamide and propamocarb were <LOQ in field soil at harvest.  相似文献   

11.
《Analytical letters》2012,45(12):1962-1977
A field survey was conducted to investigate the metal contamination in coal gangue, soils, and crops (rice and soybeans), and to evaluate the possible health risks to the local population through food chain transfer near a coal gangue pile in the Guqiao Coal Mine, China. Contamination levels of zinc, lead, cadmium, and copper in coal gangue, soils, and crops were measured, and bio-accumulation factors from soil to crops were determined; the health risks were calculated accordingly. Results showed that both coal gangue and soil contained high levels of cadmium (0.15 mg kg?1and 0.20 mg kg?1) exceeding the background value of the soil. The lead soil concentration was low (9.99 mg kg?1), but lead in rice (0.38 mg kg?1) exceeded the maximal permissible limit of 0.2 mg kg?1. For some tissues of crops studied, there was a significant correlation between the bio-accumulation factor values and the corresponding soil metal concentrations that were best described by a power equation. Oral intake of zinc, cadmium, and copper through crops posed no health risk to local residents, although hazard indices for rice (0.87–2.88) and soybeans (0.06–0.09) suggested that ingestion of rice grains was unsafe for human health. Therefore, rice was inappropriate to be planted in the soil surrounding this coal mine.  相似文献   

12.
Chromium, one of the toxic elements, along with other elements has been determined in samples of soil and plant (leaves and seeds) from Jajmau Area, Kanpur district, India, which is irrigated with effluent waste water from leather tanning industries. Soil and plant samples were collected from these areas and analyzed by Instrumental Neutron Activation Analysis (INAA) using high flux reactor neutrons and high resolution gamma-ray spectrometry. Concentrations of fifteen elements in soil and five elements in plant samples were determined by relative method. Chromium concentrations were found to be in range of 45–3,900 mg kg?1in soil samples and 14–83 mg kg?1 in plant samples. This study showed that Cr is present in significant amounts, in the soil as well as in the plant samples, near to the leather tanning area. As a part of quality control work, IAEA reference material (RM) SL-3 and NIST standard reference material (SRM) 1645 were analyzed and the quality of the results has been evaluated by calculating % deviations from recommended/literature/certified values.  相似文献   

13.
The total metal concentration and bioaccessible concentration of Cr, Mn, Fe, Cu, Zn, Se in Momordica charantia, Asparagus racemosus, Terminalia arjuna and Syzyzium cumini were measured by instrumental neutron activation analysis and by inductively coupled plasma mass spectrometry analysis (ICP-MS). The bioaccessible concentrations were determined in the gastrointestinal digest obtained after treating dried powdered samples sequentially in gastric and intestinal fluid of porcine origin at physiological conditions. The bioaccessible concentration of Fe was in the range of 58–67 mg kg?1, Mn was 10.2–14.6 mg kg?1, Cu was 3.7–4.8 mg kg?1 and Zn was 10.6–18.4 mg kg?1, were within the safety limits set for vegetable food stuff set by Joint FAO/WHO. The bioaccessibility of Zn, an essential element, was high (40–50 %) in M. charantia and in S. cumini. In addition, the total metal contents and bioaccessible concentration of Ni, Se, Cd and Pb in these samples were measured by ICP-MS. The total Cd content in S. cumini (2.6 ± 0.2 mg kg?1) and its bioaccessible concentration (0.6 mg kg?1) were strikingly high as compared to the other samples. Though total Hg contents were determined by ICP-MS, but their bioaccessible concentrations were below the detection limit (0.036 mg kg?1).  相似文献   

14.
A reliable and sensitive method for determination of MCPA in soil by derivatization through p-toluenesulfonic acid and 1,3-dichloro-2-propanol followed by gas chromatographic detection under ECD mode has been established. After treatment with hydrochloric acid, the soil samples were directly extracted without any clean-up with dichloromethane by vortexing. After derivatization and liquid–liquid extraction, the product was subjected to GC analysis. Under optimized conditions, recovery of MCPA reached 87–91%; intra- and inter-day precision values were recorded in the range 3.4–6.4% and 7.4–8.7%, respectively. Excellent linear relationship was observed within 0.1–10 μg mL?1 (0.005–0.5 mg kg?1) with linear correlation coefficient (R) of 0.9997. The LOD and LOQ were 0.001 and 0.0026 mg kg?1, respectively, and the overall sensitivity for detection was found to be in the same range as with the conventional GC-MS technique.  相似文献   

15.
A simple method was developed and validated for the simultaneous determination of metalaxyl, cyazofamid and the cyazofamid metabolite 4‐chloro‐5‐p‐tolylimidazole‐2‐carbonitrile (CCIM) by liquid chromatography with tandem mass spectrometry. The three target compounds were extracted from tobacco and soil with acetonitrile containing 0.1% acetic acid, and the extracts were purified using octadecylsilane. The proposed method showed satisfactory linearity (R2 ≥ 0.9985) for the target compounds. The limits of detection for metalaxyl, cyazofamid and CCIM were 0.006, 0.06 and 0.06 mg/kg in soil and green tobacco leaves and 0.03, 0.3 and 0.3 mg/kg in cured tobacco leaves, respectively. The limits of quantification for metalaxyl, cyazofamid and CCIM were 0.02, 0.2 and 0.2 mg/kg in soil and green tobacco leaves and 0.1, 1 and 1 mg/kg in cured tobacco leaves, respectively. The average recoveries from soil and tobacco were 72.91–98.40% for metalaxyl, 76.73–105.80% for cyazofamid and 74.48–106.45% for CCIM. The relative standard deviation range was 1.23–6.99%. The developed method was successfully applied to analysis of residues of metalaxyl, cyazofamid and CCIM in real soil and tobacco samples. The results indicated that the established method could meet the requirement for the analysis of trace amounts of all three analytes in soil and tobacco.  相似文献   

16.
Hongzhe Tian 《Chromatographia》2011,73(5-6):457-462
A method for determination of chlormequat (CCC) residue in fruits by liquid chromatography?Ctandem mass spectrometry (LC?CMS?CMS) was developed. Residue of CCC was extracted from samples with methanol?Cwater (v/v, 1:1) containing 1.0% acetic acid, cleaned up by strong cationic exchange (SCX) cartridge, and then determined by LC?CMS?CMS. The method showed good linearity over the concentration range 0.002?C5.0 mg kg?1 with correlation coefficient above 0.997. The limit of detection (LOD) and limit of quantitation (LOQ) for CCC were 5 × 10?4 mg kg?1 (S/N = 3) and 0.002 mg kg?1 (S/N = 10), respectively. Recoveries for CCC at three spiked levels (0.025, 0.050, and 0.20 mg kg?1) were in the range 80?C102%. Estimation of measurement uncertainty was calculated for CCC at the level of 0.025 mg kg?1 in fruits. The results demonstrated that the uncertainty of recovery was the main contribution to the combined standard uncertainty. The relative combined standard uncertainties associated with the method ranged from 11 to 13%, depending on the sample matrices.  相似文献   

17.
Residues of four triazole fungicides (triadimefon, myclobutanil, tebuconazole and difenoconazole) in tobacco leaves under field condition and during curing were investigated. Following extraction with acetonitrile, the samples were cleaned up by a Florisil solid phase extraction column, and then determined by gas chromatography–mass spectrometry in selected ion monitoring mode. The average recoveries of the four triazole fungicides were found in the range of 82.7–97.3% with relative standard deviations of 1.1–4.6% in green and cured tobacco leaves. The residues of triadimefon, myclobutanil, tebuconazole and difenoconazole in Shandong, Sichuan, Yunnan, Liaoning and Jiangxi were found in the range of 0.02–0.32 mg/kg, 0.41–4.93 mg/kg, 0.37–9.84 mg/kg and 0.25–4.85 mg/kg in cured tobacco leaves when measured 14 days after the last application. The residue levels of the four triazole fungicides in most cured tobacco samples were lower than that in green tobacco samples, indicating that high temperature degradation surpassed dehydration concentration during the curing process.  相似文献   

18.
A novel and accurate derivatization method for the determination of saisentong in soil was developed by high-performance liquid chromatography. The derivatization efficiency of saisentong was affected by multiple experimental conditions, including derivatization reagent amount, reaction temperature and time, oscillation rate, and reactant ratio. These conditions were optimized using an orthogonal experimental design. The final derivative was identified by liquid chromatography-tandem mass spectroscopy. The optimum derivatization conditions were as follows: 50 mL of 1.0 mol L?1 sodium thiosulfate-methanol (1:1, v/v), 2 h of heat assistance at 60 °C, and no oscillation. The derivatization efficiency of saisentong reached 70 % under these optimum conditions. The linear calibration ranges of the saisentong derivative were within 2.0–100.0 mg L?1, and the limit of detection and limit of quantification of saisentong were 0.03 and 0.10 mg kg?1, respectively. The average recoveries at three spiked levels ranged from 93.53 to 97.27 % for soil samples with relative standard deviations of 1.38 to 4.62 %. For field experiments, the half-lives of saisentong in soil samples from Guizhou and Hunan were 14.7 and 12.0 days, respectively. The proposed approach can be used to analyze saisentong residues from contaminated soil samples.  相似文献   

19.
《Analytical letters》2012,45(12):1557-1565
A definitive method based on liquid chromatography isotope dilution mass spectrometry (LC-IDMS) has been developed for the determination of milk urea, an indicator of nutrition status for the lactating animals. The milk samples were treated twice by sequentially adding acetonitrile and chloroform to precipitate proteins and then were directly separated using normal phase liquid chromatography without chemical derivatization. After the matrix separation, exact matching IDMS was used for the determination of milk urea, with high accuracy, high precision, good linearity and low uncertainty. The recoveries obtained for the four spiked milk samples were 100.6–102.2%. The linear range of signal responses was 10–2000 mg · kg?1 with a linearity coefficient of 0.9995. The intraday and interday precisions in terms with relative standard deviations (RSDs) were 0.17–0.38% and 0.28–0.40%, respectively. The uncertainties of the whole sample analysis process were estimated to be 0.83%, 0.60%, and 0.64% for three samples with concentrations of 151.28, 184.36, and 266.66 mg · kg?1.  相似文献   

20.
A facile and sensitive method utilizing capillary gas chromatography with nitrogen phosphorus detection (GC–NPD) has been developed and validated for simultaneous analysis of hexaconazole, myclobutanil, and tebuconazole, three broad-spectrum systemic fungicides, in apples and soil. Two samples were fortified with the three pesticides and subjected to ultrasonic extraction, followed by solid-phase extraction (SPE) to remove coextractives, before analysis by GC–NPD. SPE procedures were performed on PSA cartridges (500 mg, 3 mL), the analytes being eluted with n-hexane–acetone (9:1 v/v, 2 mL). Recovery of three pesticides from the fortified apple and soil samples ranged from 94.5 to 107.3% with relative standard deviations less than 9.7% at the three spike levels (0.01, 0.1, and 0.5 mg kg?1). Limits of quantification of the method for apple and soil were 0.01 mg kg?1, sufficiently below the maximum residue limits. Direct confirmation of the analytes in samples was achieved by gas chromatography–mass spectrometry (GC–MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号