首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive method for the determination of six varying polarity pesticides (imidacloprid, acetamiprid, carbendazim, simazine, linuron, and tebufenozide) based on a solid‐phase extraction disk with multiwalled nanotubes is proposed.A dispersion of multiwalled nanotubes in a surfactant aqueous solution (Triton X‐100) was used for the preparation of the solid‐phase extraction disk. The effect of surfactant on the functional groups of multiwalled nanotubes was examined by applying temperature‐programmed desorption. It was found that this treatment increased the amount of oxygen groups of treated multiwalled nanotubes comparing with untreated ones. The factors that may influence the adsorption and recovery such as the kind and volume of eluent, volume, flow rate and pH of sample were investigated and optimized. Under the optimized conditions, the maximal enrichment factors for low polar pesticides are ranging from 4000 to 4985 and for more polar are 2250 and 2750. The linear range of calibration curves was 10–500 ng/L with correlation coefficient higher than 0.9960, and the detection limit was 6.2–23.7 ng/L. Finally optimized method was applied for determination trace level of five out of six pesticides in tap and river water samples with good recovery.  相似文献   

2.
This study is the development of a new solid phase extraction method based on using magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)2-naphthol (PAN) for separation, preconcentration, and flame atomic absorption spectrometric determination of Pb(II) and Cu(II). Optimization of the method was done by investigating pH effect, amount of magnetic multiwalled carbon nanotubes impregnated with PAN, eluent type and volume, matrix effects, and volume of the sample. The optimum adsorbent amount was found to be 75 mg and the optimum pH value was found as 5.5. The detection limits were 16.6 μg L-1 for Pb(II) and 18.9 μg L-1 for Cu(II). The relative standard deviations (RSD%) were less than 4%. Two certified reference materials: SPS-WW2 wastewater and NCS-DC73349 (bush branches and leaves) were used to test the validation of the method. The method was successfully applied to the analysis of Pb(II) and Cu(II) ions in daisy, mint, paprika, sage, rosemary, daphne leaves, heather, green tea, andViburnum opulussamples.  相似文献   

3.
Multiwalled carbon nanotubes chemically functionalized with 2-((3-silylpropylimino) methyl) phenol (SPIMP-MWCNT) and successfully applied for the solid phase extraction (SPE) of some metal ions in food samples. The influences of the analytical parameters including pH, amounts of solid phase, eluent conditions (type, volume and concentrations), sample volume and interference of some metal ions on the recoveries of ions Cu2+, Pb2+, Fe2+, Ni2+ and Zn2+ ion were investigated. The metal ions retained on SPIMP-MWCNT was eluted using 6?mL of 4?mol?L?1 HNO3 solution and their content was determined by flame atomic absorption spectrometry (FAAS) with recoveries more than 95% and relative standard deviations (n?=?5) between 2.4–3.4% for both reproducibility and repeatability. The detection limit of this metal ions was between 1.0–2.6?ng?mL?1 (3S b , n?=?10) and their preconcentration factor was 100, while their loading capacity was above 32.9?mg?g?1 of SPIMP-MWCNT. The proposed method was successfully applied for the preconcentration and determination of analytes in different samples.  相似文献   

4.
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward copper has been investigated systemically, and a new method has been developed for the determination of trace copper in water samples based on preconcentration with a microcolumn packed with MWNTs prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of copper, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. Copper can be quantitatively retained by MWNTs in the pH range 5-8, and then eluted completely with 0.5 M HNO3. The detection limit of this method for Cu was 0.42 ng/mL, and the RSD was 3.5% at the 10 ng/mL Cu level. The method was validated using a certified reference material, and has been successfully applied for the determination of trace copper in water samples.  相似文献   

5.
A novel magnetic dispersive solid phase extraction method using magnetic multi-walled carbon nanotubes modified with 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt (bismuthiol II) (MMWCNTs@Bis) as the sorbent was developed for the separation and preconcentration of inorganic selenium (IV) prior to its determination by electrothermal atomic absorption spectrometry. The prepared MMWCNTs@Bis sorbent was characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and X-ray diffraction. Total selenium was determined after reduction of Se(VI) to Se(IV) by addition of hydrochloric acid and heating the mixture in a boiling water bath. Se(VI) concentration was determined from the difference between the amounts of total selenium and Se(IV). Under the optimised experimental conditions, an enhancement factor of 196 and a detection limit (based on 3Sb/m) of 0.003 µg L?1 was obtained for aqueous samples. The relative standard deviation at 0.1 µg L?1 concentration level of Se(IV) (n = 6) was found to be 5.2 and 7.7% for intra- and inter-day analysis, respectively. The method was successfully applied to the determination of inorganic selenium species in water and total selenium in food samples.  相似文献   

6.
A solid phase extraction procedure has been developed using multiwalled carbon nanotubes (MWCNTs) as a solid sorbent and quinalizarin [1,2,5,8-tetrahydroxyanthracene-9,10-dione] as a chelating agent for separation and preconcentration of trace amounts of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) before their determination by flame atomic absorption spectroscopy (FAAS). The influences of the analytical parameters, including pH, amounts of quinalizarin and adsorbent, sample volume, elution conditions such as volume and concentration of eluent, flow rates of solution and matrix ions, were investigated for the optimum recoveries of the analyte ions. No interference effects were observed from the foreign metal ions. The preconcentration factor was 100. The detection limit (LOD) for the investigated metals at the optimal conditions were observed in the range of 0.30–0.65 μg L?1. The relative standard deviation (RSDs), and the recoveries of standard addition for this method were lower than 5.0% and 96–102%, respectively. The new procedure was successfully applied to the determination of analytes in food, water and environmental samples with satisfactory results.  相似文献   

7.
8.
Multiwalled carbon nanotubes (MWCNTs) have been employed for the first time as sorbents for the isolation of basic proteins from other protein species in biological sample matrices by solid-phase extraction (SPE). A microcolumn packed with MWCNTs was incorporated after appropriate pretreatment into a sequential injection system, which facilitates online selective sorption of basic protein species (hemoglobin and cytochrome c in this particular case). The retained protein species were afterwards separated from each other by sequential elution from the microcolumn through the employment of appropriate eluents. A 0.025 mol L(-1) phosphate buffer solution of pH 8.0 facilitated the efficient collection of hemoglobin, while a 0.5 mol L(-1) NaCl solution ensured the quantitative recovery of the retained cytochrome c. With a sample loading volume of 2.0 mL, enrichment factors of 11 and 15 were derived for hemoglobin and cytochrome c, along with retention efficiencies of 100% for both species and recovery rates of 98 and 90%, respectively. A sampling frequency of 8 h(-1) was achieved, and the precisions were 3.0% and 0.8% (RSD) for hemoglobin and cytochrome c at a concentration of 5.0 microg mL(-1). The practical applicability of this system was demonstrated by processing of human whole blood for isolation of hemoglobin, and satisfactory results were obtained by assay with SDS-PAGE.  相似文献   

9.
This paper describes a novel application of pristine and chemically modified multiwalled carbon nanotubes (MWCNTs) as the packing materials for the determination of different polyhalogenated organic pollutants, pentachlorophenol, 2,4,5-trichlorophenol, 3,3′,4,4′-tetrachlorobiphenyl and 2,2′,5,5′-tetrabromobiphenyl, from aqueous solution based on solid phase extraction. The modified MWCNTs were characterized using different techniques and the results revealed the successful modification of the MWCNTs with octadecyl amine and poly(ethylene glycol), separately. Factors that maybe influence the preconcentration efficiency, such as sample flow rate, adsorbent mass, sample pH and sample volume, were studied. Desorption of the target analytes was studied using different solvents and the results showed that acetone was the best solvent for all the analytes compared with methanol and hexane. All the results indicated that the proposed method could be used for the simultaneous determination of different pollutants in environmental water samples at trace levels.  相似文献   

10.
A novel microextraction technique termed solid phase membrane tip extraction (SPMTE) was developed. Selected triazine herbicides were employed as model compounds to evaluate the extraction performance and multiwall carbon nanotubes (MWCNTs) were used as the adsorbent enclosed in SPMTE device. The SPMTE procedure was performed in semi-automated dynamic mode and several important extraction parameters were comprehensively optimized. Under the optimum extraction conditions, the method showed good linearity in the range of 1–100 μg/L, acceptable reproducibility (RSD 6–8%, n = 5), low limits of detection (0.2–0.5 μg/L), and satisfactory relative recoveries (95–101%). The SPMTE device could be regenerated and reused up to 15 analyses with no analyte carry-over effects observed. Comparison was made with commercially available solid phase extraction-molecular imprinted polymer cartridge (SPE-MIP) for triazine herbicides as the reference method. The new developed method showed comparable or even better results against reference method and is a simple, feasible, and cost effective microextraction technique.  相似文献   

11.
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.  相似文献   

12.
ABSTRACT

In this study, a simple and efficient solid phase extraction procedure was developed for simultaneous separation and preconcentration of Ba, Cd, Co, Cu, Mn and Ni. The methodology was based on preconcentration of the target analytes on N,N’-bis(4-methoxysalicylidene)-1,3-propanediamine modified silica gel prior to inductively coupled plasma optic emission spectrometry detection. The experimental conditions were as follows: pH of sample 5.00; sample and eluent flow rates 3 mL min?1; sample volume 25 mL; eluent 0.5 mol L?1 HNO3; eluent volume 3.0 mL. Preconcentration factor was achieved as 33.3 for Ba, Co, Mn; 83.3 for Cd, Ni; 166.7 for Cu. Limits of detection were found as 0.33, 0.26, 0.27, 0.36, 0.27 and 0.19 µg L?1 for Ba, Cd, Co, Cu, Mn and Ni, respectively. The relative standard deviations of 2.6–3.8% were obtained via nine parallel analyses. The suggested procedure was successfully validated by the analysis of TMDA-53.3 Lake Ontario water and ERM-CA022a soft drinking water certified reference materials and applied to various natural water samples.  相似文献   

13.
This paper describes the enhanced separation of adenine (A), hypoxanthine (HX), 8-azaadenine (8-AA), thymine (T), cytosine (C), uracil (U) and guanine (G) by CZE dispersing carboxylic multiwalled carbon nanotubes (c-MWNTs) into the running buffer. The effect of important factors such as c-MWNT nanoparticle concentration, the acidity and concentration of running buffer, and separation voltage were investigated to acquire the optimum conditions. The seven purine and pyrimidine bases could be well separated within 16 min in a 35 cm effective length fused-silica capillary at a separation voltage of +8.0 kV in a 23 mM tetraborate buffer (pH 9.2) containing 8.0 x 10(-5) g/mL c-MWNTs. Under the optimal conditions, the linear ranges were of 2-250 microg/mL for A (R2 = 0.995), 3-200 microg/mL for U (R2 = 0.990) and G (R2 = 0.992), 3-250 microg/mL for T (R2 = 0.998), 2-200 microg/mL for C (R2 = 0.985) and 4-200 microg/mL for HX (R2 = 0.988) and 8-AA (R2 = 0.990). The detection limits were 0.9 microg/mL for A (S/N = 3), 2.4 microg/mL for U, 2.0 microg/mL for T, 1.5 microg/mL for C, 2.5 microg/mL for G and 3.0 microg/mL for HX and 8-AA. The proposed method was successfully applied for determining five purine and pyrimidine bases in yeast RNA.  相似文献   

14.
We demonstrate that graphite powder and multiwalled carbon nanotubes (MWCNTs) can be derivatised by 4-nitrobenzylamine (4-NBA) simply by stirring the graphite powder or MWCNTs in a solution of acetonitrile containing 10 mM 4-NBA. We propose that 4-NBA partially intercalates at localised edge-plane or edge-plane-like defect sites and this hypothesis with a range of experimental data provided by electrochemistry in both aqueous and nonaqueous media, electron microscopy and X-ray powder diffraction.  相似文献   

15.
A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water samples. Important parameters, such as the sample pH, the concentration and volume of eluent, sample flow rate and volume, and interference of coexisting ions, were investigated. The obtained results indicated that proposed method possessed an excellent analytical performance. The linear range, the detection limit, and precison (RSD) were 1-100 ng/mL (R2 = 0.9993), 0.32 ng/mL and 2.88%, respectively. The results showed that copper could be adsorbed quantitatively on the pretreated MWCNTs with potassium permanganate, and proposed method was very useful in the monitoring of copper in the environment.  相似文献   

16.
A study about the capabilities of three kinds of nanomaterials namely, carbon nanotubes (CNT), oxidized carbon nanotubes (ox-CNT) and l-alanine immobilized on carbon nanotubes (ala-CNT) to serve as sorbents for preconcentrating Ni and Pb using an on-line system coupled to electrothermal atomic absorption spectroscopy (ETAAS) technique, was accomplished. The solid phase extraction was performed in a conical minicolumn used as sorbent holder. After loading a fixed volume of the analytes, they were eluted with a discrete volume (50 μL) of nitric acid, placed directly into the platform of a L’Vov tube. After that, each analyte was determined individually. Ni and Pb retention was strongly influenced by pH but exhibiting different behaviors. The study demonstrated that the sorbent based on ox-CNTs was the one that exhibited the highest capacity and linearity for both analytes when compared with CNT or ala-CNT. The analytical performance was evaluated for the three sorbents to establish the best conditions regarding sensitivity, reproducibility and accuracy. The precision expressed as relative standard deviations (n = 6) were 3.9 and 0.5% for Ni2+ and Pb2+, respectively The limit of detection (LOD), calculated as the concentration required to yield a net peak equal to three times the standard deviation of the background signal (3σ) was 30 and 10 ng L−1 for Ni2+ and Pb2+ respectively. Alternatively, the limit of quantification (10σ) was calculated and resulted to be 0.79 and 0.07 μg L−1 for Ni2+ and Pb2+ respectively. After optimization, the method that involved the use of ox-CNT associated to an on-line preconcentration was tested in samples of relevant environmental importance. Accuracy was evaluated analyzing a certified reference material namely, Municipal Sludge (QC MUNICIPAL SLUDGE A) and a reference sample of Lake Sediment (TRAP-LRM from IJS).  相似文献   

17.
Solid phase extraction of metal ions using carbon nanotubes   总被引:1,自引:0,他引:1  
The sorption behaviour of carbon nanotubes (CNTs) toward some divalent metal ions such as Cu(II), Co(II), Ni(II), Zn(II), Pb(II), Mn(II) and Cd(II) has been investigated systematically. The affinity order of the metal ions towards CNTs at pH in the range of 7.0-9.0 was: Cu(II) > Pb(II) > Zn(II) > Co(II) > Ni(II) > Cd(II) > Mn(II). The experimental parameters for preconcentration of copper, which exhibits the highest affinity towards carbon nanotubes, on a microcolumn packed with CNTs prior to its determination by flame atomic absorption spectrometry have been investigated. Copper can be quantitatively retained at pH 8.2 from sample volume up to 150 mL and then eluted completely with 0.1 mol L− 1 HNO3. The limit of detection limit for Cu(II) determination with FAAS detection was 2.1 μg L− 1, and the RSD was 3.5% at the 50 μg L− 1 level. Under the optimal conditions for copper enrichment also Zn(II), Pb(II) and Ni(II) could be quantitatively preconcentrated from water samples. The method was validated using a certified reference materials BCR-610 and SRM 1640.  相似文献   

18.
A new soluble multiwalled carbon nanotubes (MWNTs) covalently functionalized with conjugated polymer PCBF, in which the wt % of MWNTs is approximately calculated as 7.3%, and the average thickness of PCBF covalently grafted onto MWNTs is 10.4 nm, was synthesized by an amidation reaction. In contrast to the starting polymer PCBF‐NH2, grafting of PCBF onto MWNTs led to a 0.3 eV red‐shift of the N1s XPS peak at 399.7 eV assigning to N in the unreacted NH2moieties in the resulting copolymer structure and an appearance of new peak at 402 eV corresponding to N bound to the carbonyl C (i.e., NH? C?O). Unlike PCBF‐NH2, which only displayed a weak optical limiting response at 532 nm, Z‐scan for MWNT‐PCBF exhibited a much broader reduction in transmission and a scattering accompanying on the focus of the lens at both 532 and 1064 nm, indicating a prominent broadband optical limiting response. The thermally induced nonlinear scattering is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A microdispersive solid‐phase extraction method has been developed using multiwalled carbon nanotubes of 110–170 nm diameter and 5–9 μm length for the extraction of a group of nine phthalic acid esters (i.e., bis(2‐methoxyethyl) phthalate, bis‐2‐ethoxyethyl phthalate, dipropyl phthalate, butylbenzyl phthalate, bis‐2‐n‐butoxyethyl phthalate, bis‐isopentyl phthalate, bis‐n‐pentyl phthalate, dicyclohexyl phthalate, and di‐n‐octyl phthalate) from tap water as well as from different beverages commercialized in plastic bottles (mineral water, lemon‐ and apple‐flavored mineral water, and an isotonic drink). Determination was carried out by high‐performance liquid chromatography coupled to mass spectrometry. The extraction procedure was optimized following a step‐by‐step approach, being the optimum extraction conditions: 50 mL of each sample at pH 6.0, 80 mg of sorbent, and 25 mL of acetonitrile as elution solvent. To validate the methodology, matrix‐matched calibration and a recovery study were developed, obtaining determination coefficients >0.9906 and absolute recovery values between 70 and 117% (with relative standard deviations < 17%) in all cases. The limits of quantification of the method were between 0.173 and 1.45 μg/L. After the evaluation of the matrix effects, real samples were also analyzed, finding butylbenzyl phthalate in all samples (except in apple‐flavored mineral water), though at concentrations below its limit of quantification of the method.  相似文献   

20.
W Gao  X Sun  T Chen  Y Lin  Y Chen  F Lu  Z Chen 《Journal of separation science》2012,35(15):1967-1976
In the present work, we showed a novel method to synthesize cyano-functionalized multiwalled carbon nanotubes (MWCNTs-CN) and utilize it as a solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water samples. MWCNTs-CN was synthesized through surface functionalization of multiwalled carbon nanotubes (MWCNTs). The functional groups on the surface of modified MWCNTs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The analytical procedure was based on a conventional solid-phase extraction step for which 100 mg of MWCNTs-CN were packed in a 3 mL polypropylene cartridge. Analytes were thus isolated and preconcentrated from the pretreated samples and subsequently detected on high-performance liquid chromatography-ultraviolet detection. The results showed the proposed method exhibited good sensitivity and precision for the extraction and elution of analytes. The limit of detections (S/N = 3) of the method were 0.45, 0.09, 0.08, and 3.00 ng mL(-1) for p-chlorophenol, 1-naphthol, 2-naphthol, and 2,4-dichlorophenol, respectively. The mean relative recoveries (n = 3) were between 80.28 and 103.13%, and the repeatability (RSD ≤ 5.10%) and reproducibility (RSD ≤ 7.68%) were accepted. This developed method was applied to determine phenolic compounds in environmental water samples. There is a positive result only for 2-naphthol with concentration of 0.38 ng mL(-1) in seawater sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号