首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bis-1,4-dimesityl-1,2,3-triazol-5-ylidene-palladium complex (1a) successfully catalyzes the Mizoroki-Heck and Sonogashira coupling reactions with aryl bromides to give the corresponding alkenes and alkynes, respectively, in good to excellent yields. In the Mizoroki-Heck reaction, electron-rich, electron-poor, and functionalized aryl bromides and alkenes are tolerated, while the substrates are limited to electron-poor aryl halides in the Sonogashira coupling reaction. The palladium complex also catalyzes cross-coupling reactions with aryl chlorides to give higher yields of products than does the bis-IMes-Pd complex analogue (2), under specific conditions.  相似文献   

2.
A visible-light-induced, transition-metal and photosensitizer-free cross-coupling of aryl iodides with hydrazones was developed. In this strategy, hydrazones were used as alternatives to organometallic reagents, in the absence of a transition metal or an external photosensitizer, making this cross-coupling mild and green. The protocol was compatible with a variety of functionalities, including methyl, methoxy, trifluoromethyl, halogen, and heteroaromatic rings. Mechanistic investigations showed that the association of the hydrazone anion with aryl halides formed an electron donor–acceptor complex, which when excited with visible light generated an aryl radical via single-electron transfer.

Visible-light-induced catalyst-free cross-coupling of aryl iodides with hydrazones via single-electron-transfer was reported. The mechanistic investigations showed that the association of hydrazone anion with aryl iodides formed an EDA complex.  相似文献   

3.
Nitin S. Nandurkar 《Tetrahedron》2008,64(17):3655-3660
Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate): a structurally well-defined O-containing transition metal complex is reported as an efficient catalyst for Suzuki, Heck, and Sonogashira cross-coupling reactions. The protocol was also applied successfully for cyanation of aryl halides under milder operating conditions. The system tolerated the coupling of various aryl halides with alkenes, alkynes, and organoboronic acid along with the cyanation of aryl halides providing good to excellent yields of desired products.  相似文献   

4.
K.G. Thakur 《Tetrahedron letters》2009,50(24):2865-5152
A wide range of arylated alkynes are synthesized from the corresponding aryl halides and terminal alkynes through Sonogashira type cross-coupling reactions through C(aryl)-C bond formation in the presence of a catalytic amount of N,N′-dibenzyl BINAM-CuI complex under mild reaction conditions.  相似文献   

5.
In the presence of TBAB, CuI-catalyzed Suzuki-Miyaura cross-coupling of vinyl halides and aryl halides with arylboronic acids was conducted smoothly to afford the corresponding diarylethenes and polyaryls in moderate to good yields using DABCO (1,4-diazabicyclo[2.2.2]octane) as the ligand. We also found that the inexpensive CuI/DABCO catalytic system was effective for Sonogashira cross-couplings of aryl halides and vinyl halides. A variety of aryl halides and vinyl halides including activated aryl chlorides underwent the coupling with terminal alkynes in moderate to excellent yields.  相似文献   

6.
A novel pathway for homocoupling of terminal alkynes has been described using cyclopalladated ferrocenylimine 1 or 2/CuI as catalyst in the air. This catalytic system could tolerate several functional groups. The palladacycle 2 in the presence of n-Bu4NBr as an additive could be applied to Sonogashira cross-coupling reaction of aryl iodides, aryl bromides, and some activated aryl chlorides with terminal alkynes under amine- and copper-free conditions, mostly to give moderate to excellent yields.  相似文献   

7.
Forging carbon–carbon (C–C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki–Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C–C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium''s DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein–ligand interactions in pharmaceutical research.

Taking advantage of aryl diazonium intermediates, this work reported a DNA-compatible C–C bond formation strategy, achieving broad substrate scope, exquisite functional group tolerance, and orthogonality to aryl halide-based coupling reactions.  相似文献   

8.
A heterogeneous [Pd(NH3)4]-NaY catalyst was applied to the copper-free Sonogashira cross-coupling of aryl halides with terminal alkynes. This copper-free heterogeneous Pd-catalyst is efficient, stable and recyclable. Aryl iodides and activated aryl bromides were converted quantitatively using 1 mol % Pd-catalyst to the corresponding diaryl-substituted alkynes within 3 h.  相似文献   

9.
A palladium--phosphinous acid-catalyzed Sonogashira cross-coupling reaction that proceeds in water under air atmosphere in the absence of organic co-solvents has been developed. Disubstituted alkynes have been prepared in up to 91% yield by POPd-catalyzed coupling of various aryl halides including chlorides in the presence of tetrabutylammonium bromide and pyrrolidine or NaOH.  相似文献   

10.
[structure: see text] The catalytic activity in Sonogashira cross-coupling reactions of alkynes with a variety of aryl halides (including chlorides) using a multidentate ferrocenyl phosphine is presented. The novel mixed ferrocenyl aryl/alkyl triphosphine is thermally stable and insensitive to air or moisture, and its robustness allows aryl alkynylation at 10(-1) to 10(-4) mol % catalyst loadings with TONs up to 250,000. Copper-free coupling using phenylacetylene is also accessible in good yield.  相似文献   

11.
Direct coupling of unactivated alcohols remains a challenge in synthetic chemistry. Current approaches to cross-coupling of alcohol-derived electrophiles often involve activated alcohols such as tosylates or carbonates. We report the direct arylative substitution of homoallylic alcohols catalyzed by a nickel-bisphosphine complex as a facile method to generate allylic arenes. These reactions proceed via formation of an allylic alcohol intermediate. Subsequent allylic substitution with arylboroxine nucleophiles enables the formation of a variety of allylic arenes. The presence of p-methoxyphenylboronic acid is crucial to activate the allylic alcohol to achieve high product yields.

Arylative substitutions of homoallylic alcohols with arylboron nucleophiles demonstrate the utility of unactivated alcohols as coupling partners in transition metal-catalyzed cross-coupling chemistry.  相似文献   

12.
Palladium/copper-catalyzed Sonogashira cross-coupling reaction of aryl halides with a variety of terminal alkynes under amine-free conditions in dimethylformamide (DMF) at 80 degrees C gave internal arylated alkynes using PdCl2(MeCN)2 with phosphine-free hydrazone 2a as a ligand and CuI as the cocatalyst in good yields. We also found PdCl2/hydrazone ligand 1d in PhMe at 80 degrees C was a phosphine-free efficient catalyst system for a Hiyama cross-coupling reaction of aryl bromides with aryl(trialkoxy)silanes in good yields.  相似文献   

13.
Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of alkyl radical intermediates out of the solvent cage to participate in an intra- or intermolecular radical cascade with a range of VCPs followed by re-entering the Fe radical cross-coupling cycle to undergo (stereo)selective C(sp2)–C(sp3) bond formation. This work provides a proof-of-concept of the use of vinyl cyclopropanes as synthetically useful 1,5-synthons in Fe-catalyzed conjunctive cross-couplings with alkyl halides and aryl/vinyl Grignard reagents. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach.  相似文献   

14.
Heterogeneous Sonogashira coupling of terminal alkynes with aryl halides was studied over a polymer-supported macrocyclic Schiff base palladium complex. The cross-coupling reaction proceeded smoothly by adding a piperidine in water medium. The catalyst exhibited effective catalytic activities to afford the corresponding products in good to excellent yields under copper-free conditions. Furthermore, the catalyst could be easily recovered and reused for several times without a significant loss of its activity.  相似文献   

15.
In this work, biosynthesized Fe3O4@Ni nanoparticles using Euphorbia maculata aqueous have been used as effective catalysts in the synthesis of 2,3-disubstituted benzo[b]furan derivatives using three component coupling of aldehydes, secondary amines and alkynes (A3 coupling reaction). Using novel nanoscale materials, the current green, practical and economical method leads to short reaction times and high yields. The biosynthesized catalyst was also successfully employed in the Sonogashira cross-coupling reactions of various aryl halides with phenylacetylene. The best performance was observed using just 20 mg of the catalyst and ethanol as a green solvent. The developed protocol provides easy workup, short reaction times and good to excellent product yields. Furthermore, since the composite is highly stable, an external permanent magnet can be easily used for separating the catalyst. Thus, the catalyst can be recycled several times without considerable loss of catalytic activity.  相似文献   

16.
The modulation of selectivity of highly reactive carbon radical cross-coupling for the construction of C–C bonds represents a challenging task in organic chemistry. N-Heterocyclic carbene (NHC) catalyzed radical transformations have opened a new avenue for acyl radical cross-coupling chemistry. With this method, highly selective cross-coupling of an acyl radical with an alkyl radical for efficient construction of C–C bonds was successfully realized. However, the cross-coupling reaction of acyl radicals with vinyl radicals has been much less investigated. We herein describe NHC and visible light-mediated photoredox co-catalyzed radical 1,4-sulfonylacylation of 1,3-enynes, providing structurally diversified valuable tetrasubstituted allenyl ketones. Mechanistic studies indicated that ketyl radicals are formed from aroyl fluorides via the oxidative quenching of the photocatalyst excited state, allenyl radicals are generated from chemo-specific sulfonyl radical addition to the 1,3-enynes, and finally, the key allenyl and ketyl radical cross-coupling provides tetrasubstituted allenyl ketones.

Unprecedented NHC and photocatalysis co-catalyzed radical 1,4-sulfonylacylation of 1,3-enynes has been realized, providing structurally diversified tetrasubstituted allenyl ketones via allenyl and ketyl radical cross-coupling.  相似文献   

17.
3-Iodo-4-chalcogen-2H-benzopyran derivatives underwent a direct Sonogashira cross-coupling reaction with several terminal alkynes in the presence of a catalytic amount of Pd(PPh3)2Cl2 with CuI as a co-catalyst, using Et3N as base and solvent. This cross-coupling reaction proceeded cleanly under mild conditions and was performed with propargylic alcohols, propargylic ethers, as well as alkyl and aryl alkynes, furnishing the correspondent 3-alkynyl-4-chalcogen-2H-benzopyrans in good yields.  相似文献   

18.
王磊  李品华 《中国化学》2003,21(4):474-476
A Sonogashira coupling reaction of aromatic halides with terminal alkynes in the presence of palladium powder,potassium fluoride,cuprous iodide and triphenylphosphine in methanol,giving the corresponding coupling products aryl alkynes in good to excellent yiekls,was investigated.  相似文献   

19.
Jong-Ho Kim 《Tetrahedron letters》2007,48(40):7079-7084
A core-shell type of polymer-supported N-heterocyclic carbene (NHC) palladium catalyst was applied to Sonogashira cross-coupling reactions without copper cocatalyst under ambient atmosphere. This supported NHC-palladium complex efficiently catalyzed the copper-free Sonogashira reaction of various aryl iodides and bromides with terminal alkynes; the reaction exhibited high dependency on the temperature and the amount of base as well as its nature. In addition, this heterogeneous catalyst exhibited good reusability for the copper-free Sonogashira reaction.  相似文献   

20.
N-Amido imidazolium salt was employed as a ligand in the palladium-catalyzed cross-coupling reaction of aryl halides and thiols, and showed good activity in the formation of thioether. The best combination for the coupling with aryl bromides was N-amido imidazolium salt 2 and NaHMDS, and that for the coupling with aryl iodides was N-amido imidazolium salt 1 and KOtBu. The coupling reactions were conducted in the presence of Pd(OAc)2 (1 mol %) in DMSO at 80 °C for 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号