首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we aimed to study the association and interaction behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers grafted with poly(vinylpyrrolidone). Critical micellization concentrations were determined using fluorescent probes (pyrene) and critical micellization temperatures characterizing temperature-dependent transitions from monomers to multimolecular micelles were measured. The thermal responsiveness of the copolymer is not affected by the grafting. The hydrodynamic radius of the graft copolymer micelles is found to be greater than that of the original copolymer micelles. The graft copolymer is found to form anisotropic aggregates. The structure of the graft copolymer micelles is less disrupted by the anionic surfactant sodium dodecyl sulfate, compared to the ungraft copolymer.  相似文献   

2.
Aggregation and disaggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, Pluronics P103 and P104, in aqueous solutions during a heating and cooling cycle were investigated by dynamic laser scattering (DLS) and 1H NMR spectroscopy. Temperature hysteresis was observed by DLS when cooling the copolymer aqueous solutions because larger aggregates existed at temperatures lower than critical micellization temperature (CMT), but no temperature differences were observed by NMR. This phenomenon was explained as the forming of water-swollen micelles at temperatures lower than CMT during the cooling process.  相似文献   

3.
The effect of sodium chloride (NaCl) upon the thermally induced association behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, Pluronic P103, has been investigated using pyrene fluorescence spectroscopy. The critical micellization temperature (CMT) of Pluronic P103 in aqueous solution is decreased by the addition of NaCl. The standard enthalpy and entropy of micellization for Pluronic P103 in water are increased in the presence of small amounts of NaCl, but further addition of NaCl decreases the standard enthalpy and entropy of micellization. The I1/I3 ratio of pyrene in aqueous Pluronic P103 solutions at temperature below the CMT decreases with increases of NaCl concentration, which is related to the decrease of PPO solubility. The decrease in polarity of the PPO shifts the CMT toward lower temperature.  相似文献   

4.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

5.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

6.
The micellization properties of carboxy-modified Pluronics P85 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers) are investigated by means of a molecularly realistic self-consistent-field theory. We consider the, so-called, carboxylic acid end-standing P85 (CAE-85) case where the carboxylic group is located at the end of both PEO parts and the carboxylic acid center-standing P85 (CAC-85) case where each of the carboxylic group presents between the PEO and PPO blocks. The micellization of these copolymers depends on the pH, the added electrolyte concentration phis, and the temperature. It is shown that the aggregation number (Nagg) decreases, whereas the critical micellization concentration (CMC) increases with pH. For the case of increasing phis, the Nagg increases and the CMC decreases. The critical micellization temperature (CMT) and cloud point temperature (CPT) increase with pH at low phis and decrease at increasing phis. The changing from CAE-85 to CAC-85 leads to increasing CMC and CMT, but lower CPT.  相似文献   

7.
Interaction of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers with anionic sodium dodecyl sulfate (SDS) has been investigated in aqueous solution. Formation of mixed micelles has been confirmed by surface tension measurements, whereas the influence of the surfactant on the copolymer self-assembling has been studied by measurement of the 1H NMR self-diffusion coefficients and by small-angle neutron scattering. As a rule, the surfactant decreases the heterogeneity of the micellar structures formed by the copolymer in water. Moreover, increasing the content of SDS results in the increasingly more important extension of the poly(ethylene oxide) (PEO) corona chains and the copolymer micelle deaggregation. The stability of the micelles against SDS increases with the length of the hydrophobic block. Preliminary two-dimensional NMR measurements with nuclear Overhauser enhancement have confirmed the spatial vicinity between SDS and the constitutive blocks of the copolymer.  相似文献   

8.
The gelation behavior of a poly(ethylene-alt-propylene)-b-poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (PON) triblock terpolymer and a poly(N-isopropylacrylamide)-b-poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (NON) triblock copolymer was studied by rheology over the concentration range 1-5 wt %. In comparison to the NON copolymer, gelation of the PON terpolymer was achieved at a much lower concentration, with a much sharper sol-gel transition. This is due to a stepwise gelation of PON terpolymers involving micellization at room temperature and gelation at elevated temperatures. The separation of micellization and gelation leads to the formation of a two-compartment network as observed by cryoTEM. The results highlight the intricate and tunable nanostructures and new properties accessible from ABC terpolymer hydrogels.  相似文献   

9.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

10.
The self-aggregation behavior of two amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer samples with nearly identical PHB block lengths but different PEO block lengths, PEO-PHB-PEO(2000-810-2000) and PEO-PHB-PEO(5000-780-5000), was studied with dynamic and static light scattering (DLS and SLS), in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). The formation of polymeric micelles by the two PEO-PHB-PEO triblock copolymers was confirmed with fluorescence technique and TEM. DLS analysis showed that the hydrodynamic radius (R(h)) of the monodistributed polymeric micelles increased with an increase in PEO block length. The relative thermostability of the triblock copolymer micelles was studied by SLS and DLS at different temperatures. The aggregation number and the ratio of the radius of gyration over hydrodynamic radius were found to be independent of temperature, probably due to the strong hydrophobicity of the PHB block. The combination of DLS and SLS studies indicated that the polymeric micelles were composed of a densely packed core of hydrophobic PHB blocks and a corona shell formed by hydrophilic PEO blocks. The aggregation numbers were found to be approximately 53 for PEO-PHB-PEO(2000-810-2000) micelles and approximately 37 for PEO-PHB-PEO(5000-780-5000) micelles. The morphology of PEO-PHB-PEO spherical micelles determined by DLS and SLS measurements was further confirmed by TEM.  相似文献   

11.
Effect of bovine serum albumin (BSA) on the temperature-dependent association behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers was investigated using pyrene fluorescence spectroscopy. The critical micellization temperature (CMT) of pluronics in aqueous solution was increased by the addition of BSA. A closed association model was used to obtain the standard free energies (△G0), enthalpies (△H 0), and entropies (△S 0) of micellization. The standard enthalpy and entropy of micellization for pluronic polymers in water were decreased with an increase of the BSA content. The more PPO component in the pluronic polymer, the higher the changed values of micellization enthalpy and entropy. The hydrophobic part of the pluronics, PPO, was responsible for the interaction between pluronics and BSA. Hydrophobic interaction between PPO and BSA was correlated to the alternation of the PPO-PPO interaction by the addition of BSA, which would shift the CMT toward higher temperature and alter the thermodynamic parameters of micellization for pluronics in aqueous solutions.  相似文献   

12.
The aim of this study is to determine the effects of oil solutes and alcohol cosolvents on the structure of oil-in-water microemulsions stabilized by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The systems investigated involved the solubilization of 1,3,5-trimethylbenzene or 1,2-dichlorobenzene by P123 (EO(20)-PO(70)-EO(20)) pluronic surfactant micelles in water and water + ethanol solvents. The structures of these swollen micelles were determined by small-angle neutron scattering (SANS). A thermodynamic model was employed to interpret the characterization data. The results of the thermodynamic model for micellization agreed well with the SANS data from samples of micelles swollen by both oils. The model predicted the size of the micelles within 5% accuracy using only one fitting parameter, the micelle polydispersity. Ethanol had significantly different effects on the polymer micelles that contained solubilized oil compared to pure polymer micelles. For pure polymer micelles, the addition of ethanol increased the solubility of the polymer and, therefore, decreased the total volume fraction of micelles, while for polymer-oil aggregates, ethanol tended to have a positive effect on the volume fraction of micelles. SANS results showed that the greatest divergence from pure aqueous solvent results occurred at oil concentrations above the microemulsion stability limit.  相似文献   

13.
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.  相似文献   

14.
Four poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers with different molecular weights and PPO/PEO composition ratios were synthesized. The characterization of the PEO-PPO-PEO triblock copolymers was studied by surface tension measurement, UV-vis spectra, and surface pressure method. These results clearly showed that the CMC of PEO-PPO-PEO was not a certain value but a concentration range, in contrast to classical surfactant, and two breaks around CMC were reflected in both surface tension isotherm curves and UV-vis absorption spectra. The range of CMC became wider with increasing PPO/PEO composition ratio. Surface pressure Pi-A curves revealed that the amphiphilic triblock copolymer PEO-PPO-PEO molecule was flexible at the air/water interface. We found that the minimum area per molecule at the air/water interface increased with the proportion of PEO chains. The copolymers with the same mass fractions of PEO had similar slopes in the isotherm of the Pi-A curve. From the demulsification experiments a conclusion had been drawn that the dehydration speed increased with decreased content of PEO, but the final dehydration rate of four demulsifiers was approximate. We determined that the coalescence of water drops resulted in the breaking of crude oil emulsions from the micrograph.  相似文献   

15.
Pluronic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers are grafted with poly(vinyl pyrrolidone) by free radical polymerization of vinyl pyrrolidone with simultaneous chain transfer to the Pluronic in dioxane. This modified polymer has both thermal responsiveness and remarkable capacity to interact with a wide variety of hydrophilic and hydrophobic pharmaceutical agents which is very attractive for medical applications. The chemical structure of the graft copolymers was characterized by FTIR and 1H NMR spectroscopy. Polymerization conditions such as initiators, feed ratio, and reaction times are studied to obtain the ideal graft copolymer.  相似文献   

16.
The effect of potassium chloride on the micellization of a poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (PEO‐PPO‐PEO) triblock copolymer (Pluronic F88: EO103PO39EO103.) in water was studied by fluorescence, FTIR, 1H NMR, dynamic light scattering, and dye solubilization. The critical micellization temperature (CMT) values of the copolymer decreased with an increase of KCl concentration while micellar core gets progressively dehydrated. The results reveal the leading role of salt‐water interaction in promoting the micellization of PEO‐PPO‐PEO copolymer by the addition of salt. No significant micellar growth was seen even at temperatures close to cloud point.  相似文献   

17.
A triblock copolymer of ethylene oxide and 1,2-butylene oxide, denoted B10E410B10, was prepared by sequential oxyanionic polymerization and characterized by 13C NMR spectroscopy and gel permeation chromatography. Micellization and the formation of micelle clusters in dilute aqueous solution, the latter a consequence of micelle bridging, was confirmed by dynamic light scattering, and average association numbers of the micelles were determined by static light scattering for T = 20-40 degrees C. The frequency dependence of the dynamic storage and loss moduli was investigated for solutions in the range of 5-20 wt %. Comparison with results for poly(oxyethylene) dialkyl ethers (10 wt %, T = 25 degrees C) indicated that the viscoelasticity of a copolymer with terminal B10 hydrophobic blocks was roughly equivalent to one with terminal C14 alkyl chains. The temperature dependence of the modulus was investigated for 15 wt % solutions at T = 5-40 degrees C. Superposition of the data led, via an Arrhenius plot, to an activation energy for the relaxation process of -40 kJ mol(-1). The negative value contrasts with the positive values found for poly(oxyethylene) dialkyl ethers and related HEUR copolymers with urethane-linked terminal alkyl chains. This difference is attributed to the block-length distribution in copolymer B10E410B10, whereby the activation energy of the relaxation process has a positive contribution from the disengagement of B blocks from micelles but a negative contribution from micellization. The negative value of the activation energy for solutions of B10E410B10 was confirmed by determining the temperature dependence of the zero-shear viscosity of its 15 wt % solution.  相似文献   

18.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

19.
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations.  相似文献   

20.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号