首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BSCCO/Ag tape superconductors are developed for electrical power applications at liquid nitrogen temperatures. In these applications, e.g., superconducting transformers and power cables, an AC transport current and an AC magnetic field are present at the same time. A set-up to measure the influence of external AC magnetic field on the transport current loss, i.e., the voltage drop across a sample supplied with an AC transport current, has been developed. The magnetic field can be applied both parallel and perpendicular to the broad side of the tape conductor. An increase of the transport current loss due to the external AC magnetic field is observed. When a DC external magnetic field is applied the increase of the self-field loss can be described well by the decrease of the critical current due to the magnetic field. In the case of an AC external magnetic field this is only a minor effect. For magnetic field amplitudes higher than a certain threshold value the transport current loss is described reasonably well by the self-field loss and a dynamic resistance contribution calculated from the DC voltage–current relation in AC magnetic field.  相似文献   

2.
We study experimentally and theoretically the AC transport current loss characteristics of a tape in multiple tapes assembled in single layer and subject to external field produced by transport currents of adjacent tapes. We measured the AC transport current losses of a Bi2223 silver-sheathed tape in a single layer arrangement of three tapes using our newly developed potential leads arrangement to avoid spurious loss components caused by the magnetization in the adjacent tapes. In the paper, the influence of the external AC field produced by adjacent tapes on the loss characteristics is studied based on the experimental results and theoretical analysis.  相似文献   

3.
Some results of AC loss measurements are presented for 19, 61, 127-filamentary Bi-2223/Ag tapes prepared by the ‘powder-in-tube' method. All measurements have been made at T=77 K under sinusoidal transport current with frequency in the range of 30–600 Hz and the current amplitude up to 30 A. The measurements have been carried out both in self field conditions and at the external magnetic field applied to the tape at the different angles. The dependencies of the AC losses on current amplitude and frequency have been obtained. It is found that for all tapes the current amplitude dependencies of the AC losses show good agreement with the Norris prediction for an elliptical or strip geometry. The AC loss dependencies on frequency were linear. The measurements of AC losses in external magnetic field show that the change of AC losses is only through the change of the critical current. So the transport AC losses in the tapes are the ‘saturation losses' that is they are different from classic hysteresis losses.  相似文献   

4.
To demonstrate the possibility of manufacturing a HTS power transmission cable with low AC losses, we fabricated a 10 m long cable conductor and a cryosystem. The conductor was wound in a four-layer design out of 2 km Ag/Bi-2223 tapes. We determined a critical current of 5000 A. Loss measurements were performed with an electric method which detects the voltage drop along the conductor with a lock-in technique and a calorimetric method which measures the temperature rise along the conductor. Both methods yield the same low loss values of only 0.8 W/m at 77 K and 2000 Arms/50 Hz. This is due to the low loss winding scheme we used which assures an equal current distribution in all four layers through transformatoric coupling. We applied the uniform current distribution model and added the nonlinear VI curve to describe quantitatively the obtained results.  相似文献   

5.
AC losses in multifilamentary tapes depend on various parameters. Among them, geometrical factors such as overall tape width and thickness as well as the precise arrangement of the filaments are expected to have an important influence. Several theoretical models describe this dependency. In order to study these geometrical effects experimentally, we prepared a series of Bi(2223)/Ag tapes with gradually changing filament arrangements and tape aspect ratio, and characterised them by AC transport and magnetic measurements. The results are compared to model predictions.  相似文献   

6.
We fabricated Bi2223 multifilamentary sample wires with various twist pitches and investigated the electromagnetic properties experimentally. They showed monofilamentlike electromagnetic properties regardless of twisting due to the contacts among filaments and/or proximity effect. The observed AC losses in the non-twisted sample wire agreed roughly with the theoretical prediction for a homogeneous superconducting slab with the same thickness of the filamentary region on the basis of Irie–Yamafuji model. However the AC losses in the twisted wires deviated from the theoretical ones, especially for the amplitude around the theoretically predicted penetration field of the slab. We showed that the observed AC loss properties can be explained by both the twist effect for the macroscopic shielding current and the contribution of the local shielding current.  相似文献   

7.
Transport AC losses measured in self-field conditions on multifilamentary Bi-2223 tapes are often found to be lower than those calculated within the framework of the critical state model for a bulk wire with elliptical cross section, though generally higher than predicted for a strip. This effect is sometimes ascribed to the non-ideal geometry of the tapes, which does not exactly reproduce either shape. Here we propose an alternative explanation assuming that the critical current density of superconducting material depends on magnetic field. In practice, we analyzed the AC loss curve and deduced different Ic values for the individual data points, using the standard Norris equation for elliptical conductor. This gives the relation between ‘calculated' Ic and the self-field associated to AC transport current, which can be regarded as an alternative way to qualify the dependence of Jc on magnetic field. Important is that this procedure covers the range of fields below the self-field at Ic where the measurement in background DC field can not be used to determine Jc(B).  相似文献   

8.
Experimental measurements of AC losses were carried out on Ag sheathed PbBi2223 tapes with twisted and untwisted filaments. Losses were measured at 77 K as function of frequency and magnetic field parallel and perpendicular to the tape surface, using appropriate pick-up loops. Both the first and third harmonics of the signal were measured, in order to distinguish between the hysteresis loss and other types of loss. The effect of filaments uncoupling by twisting was clearly identified. For a tape with a twist pitch of 10 mm and Ic=40 A (20 kA cm−2) operating at 43 Hz, the filaments are uncoupled in fields less than 40 mT, which is greater than the full penetration field for both the filaments and the tape. Hence, a reduction in the hysteretic loss of the superconducting core is realised at power frequency between 10 and 40 mT. Results form the self-field loss measurement implies the uncoupling of twisted filaments at relative low transport current (I<0.5Ic)  相似文献   

9.
AC losses were measured by 4-probe transport method and by external magnetization method in three samples of Bi-2223/Ag tape: a multifilamentary tape with separated filaments, another multifilamentary tape with ‘bridges' between filaments, and a two-shell tape. The transport losses agreed with those calculated using Ic from DC experiment. Magnetization experiments gave indications about the various paths of induced currents. For the tape with well separated filaments the main part of screening current closes inside individual filaments. Additional screening of the whole filamentary zone involves the normal metal matrix, leading to frequency dependent losses. In the case of tape with ‘bridged' filaments, supercurrents interconnect the filaments into bundles whose screening (and loss) is frequency-independent. Matching the experimental data indicates that a typical bundle was composed of 8 filaments. Magnetic losses of the two-shell tape were explained by a model for magnetization of superconducting wire with elliptical cross-section.  相似文献   

10.
In a typical superconducting coil made of BSCCO/Ag tape, both amplitude and direction of the magnetic field determine the critical current, resistive voltage and AC loss. The distribution of the magnetic field along and across the superconducting tape in a coil is rather complex. This gives rise to the question: how accurate can one predict the critical current, VI characteristic and AC loss of the AC coil from results of short sample measurements? To answer this question, we have measured and compared the characteristics of a short sample and a small coil employing 14 m of the same tape at 77 K. The comparison is performed as follows. First, a short sample is characterised with regard to the field dependence of the critical current, VI characteristic and the AC loss. Second, the distribution of the magnetic field along the tape in a coil is accurately calculated. From the data, the voltage along the tape and the loss of the tape in the coil are found. Finally, the resistive voltage and the AC loss of the complete coil are calculated and compared to measured AC losses in the frequency range of 0 to 160 Hz, typical for power applications.  相似文献   

11.
Measurements of the AC loss in applied magnetic fields at 77 K have been made on model composite Bi-2223 conductors. A vibrating sample magnetometer (VSM) and a dual Hall sensor magnetometer (HSM) were used to cover the frequency range from below 0.01 Hz to over 250 Hz at AC fields up to 0.05 T rms. The VSM was limited to the frequency range below 0.2 Hz. A comparison of the two measurement techniques was possible at intermediate frequencies. The samples consisted of vertical stacks of well separated flat filaments of superconductor in Ag and Ag-alloy matrix, allowing a range of filament coupling conditions to be explored.  相似文献   

12.
A series of electrical AC loss measurements on Bi-2223 tapes have been performed under the Brite Euram project SACPA. This included, for the first time, a round-robin of independent self-field AC loss measurements between four laboratories. The very close agreement of data demonstrates the validity of the electrical technique and lays the basis for a measurement standard. Other preliminary measurements in SACPA showing the variation of losses with frequency, temperature and applied DC field are also reported.  相似文献   

13.
In AC power-engineering applications, a large part of the AC loss in the superconductor is due to magnetization by the external field. This magnetic AC loss has been well described for the low-Tc conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity and flux creep. Magnetic AC loss in various twisted and non-twisted Bi-2223 tapes has been measured at power frequencies by a pickup method. The results are compared to theoretical models of magnetization loss. When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is pure silver. The extra effect of higher-resistance matrix materials is studied. In perpendicular field it is more difficult to decouple the filaments, due to the particular tape geometry. Contrary to a wire, there are essential differences between the AC loss mechanisms in a long twisted tape and those in a short piece of non-twisted tape. Finally, the dynamic resistance caused by the AC magnetic field is examined.  相似文献   

14.
We measured cyclic losses in a superconducting wire, carrying alternating transport current, simultaneously exposed to an alternating transverse magnetic field. Samples of Bi-2223 Ag-sheathed tapes have configuration of a double-layer non-inductive coil, which itself is a pickup coil to measure the AC losses. Potential taps were attached to both terminals of the sample coil. The external field was applied along the axis of the sample coil. In this procedure, we can estimate an averaged Poynting's vector on a cylindrical surface between the two layers by means of signals from a pair of the potential taps and from pickup coils for the external magnetic field and the transport current. We can also measure a magnetization and an extended transport-current components of AC losses in addition to a total cyclic loss for a combined alternating external field and transport current. Obtained results are compared with numerical predictions of the critical state model taking into account the magnetic field dependence of critical current density.  相似文献   

15.
We report single-phase AC loss measurements on 8-, 4-, and 3-layer, multi-strand, HTS prototype conductors for power transmission lines. We use both calorimetric and electrical techniques. The agreement between the two techniques suggests that the interlayer current distribution in 1-m long conductors are representative of those in long conductors. The losses for the 8- and 4-layer conductors are in rough agreement, with the 8-layer losses being somewhat lower. The 3-layer conductor losses are substantially higher — probably due to unbalanced azimuthal currents for this configuration.  相似文献   

16.
The fundamentals of the electromagnetic modelling of high-temperature superconductors are discussed. Special attention is paid to intrinsic features of high-temperature superconductors different to those of low-temperature superconductors. Examples of those features are strong thermal fluctuations, which results in enhanced flux creep and slanted E(J)-characteristics, anisotropy of critical current density and material resistivity, and the granularity of the material. Having established the fundamental principles for the loss modelling, the influence of thermal fluctuations, anisotropy and granularity on the AC losses are considered.  相似文献   

17.
The current density distribution of high temperature superconducting (HTS) tapes is modeled for the combined case of an alternating self and applied magnetic field. This numerical analysis is based on the two-dimensional Poisson equation for the vector potential. A one-dimensional current (z-direction) and a one-dimensional applied field (y-direction) are assumed. The vector potential is rewritten into an equation of motion for the current density J(x,y,t). The model covers the finite thickness of the conductor and an n-power E–J relation. The magnetic field dependence of Jc is also included in this E–J relation. A time-dependent two-dimensional current distribution that is influenced by the aspect ratio of the conductor and the material properties in E=f(J,B) is calculated numerically. The numerical results are compared with the experimental results for the AC loss of a tape driven by a transport current. Finally, a total AC loss factor is given for two cases in magnetic field direction, perpendicular and parallel to the conductor broad side.  相似文献   

18.
Stability of a Bi-2223/Ag multifilamentary composite conductor against fast transport current ramps was studied by using a numerical model. The model was based on the two-dimensional magnetic diffusion and heat conduction equations. Calculations were carried out both in an adiabatic mode and pool boiling modes in liquid helium, hydrogen and nitrogen. When estimating the heat load (AC losses), real temperature dependent current density–electric field characteristics were used. The results computed by the finite element method are presented and discussed with special emphasis on differences of the stability considerations between high-temperature and low-temperature superconductors.  相似文献   

19.
Temperature dependence of transport ac losses in two Bi-2223/Ag multifilamentary tapes with different dc current–voltage characteristics was measured using a lock-in technique at power frequencies. At each temperature, different criteria for critical current determination were used. Comparisons of normalised ac losses with predictions of theoretical models for a tape with elliptical cross-section and a thin strip were made. It was found that the form of the current–voltage characteristic and the critical current criterion play an important role in comparison with theoretical data. A new normalisation procedure of ac loss data is proposed.  相似文献   

20.
To replace conventional normal conducting solutions in electrotechnical devices, high-Tc superconductors must offer distinct economical and technical benefits in terms of lower overall loss, volume and weight. Based on AC loss theory we design appropriate 50 Hz reference conductors for cables, transformers and other applications, calculate admissible limits for the conductor variables filament diameter, twist and matrix resistance and compare this to the present state of Bi-2223-tape conductors and AC loss measurements. Further the influence of perpendicular AC field components on losses is addressed. High current devices will require multistrand conductors, where nonuniform current distribution due to unbalanced magnetic coupling may result in partial saturation and enhanced losses. As an example we discuss the multilayer HTSC-cable and present a solution based on a ‘zero flux condition' for azimuthal and axial magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号