首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Research in mathematics education that crosses national boundaries provides new insights into the development and improvement of the teaching and learning of mathematics. In particular, cross-national comparisons lead researchers to more explicit understanding of their own implicit theories about how teachers teach and how children learn mathematics in their local contexts as well as what is going on in school mathematics in other countries. Further, when researchers from multiple countries and regions study collaboratively aspects of teaching and learning of mathematics, the taken-for-granted familiar practices in the classroom can be questioned. Such cross-national comparisons provide opportunities for researchers and educators to probe typical dichotomies such as “high-performing” versus “low performing”, “teacher-centred versus student-centred”, or even “East versus West”, in searching for similarities and differences in educational policies and practices in different cultural contexts.  相似文献   

2.
After a through review of the relevant literature in terms of textbook analysis and mathematics teachers' user of textbooks in school contexts, this paper reports on selected and early findings from a study of mathematics textbooks and their use in English, French and German mathematics classrooms at lower secondary level. The research reviewed in the literature section raises important questions about textbooks as representations of the curriculum and about their role as a link between curriculum and pedagogy. Teachers, in tunr, appear to exercise control over the curriculum as it is enacted by using texts in the service of their own perceptions of teaching and learning. The second and main part of the paper analyses the ways in which textbooks vary and are used by teachers in classroom contexts and how this influences the culture of the mathematics classroom. The findings of the research demonstrate that classroom cultures are shaped by at least two factors: teachers' pedagogic principles in their immediate school and classroom context; and a system's educational and cultural traditions as they develop over time. It is argued that mathematics classroom cultures need to be understood in terms of a wider cultural and systemic context, in order for shared understandings, principles and meanings to be established, whether for promotion of classroom reform or simply for developing a better understanding of this vital component of the mathematics education process.  相似文献   

3.
We analyze the intersection of new forms of representation infrastructures in a particular dynamic mathematics software (SimCalc MathWorlds®) with the affordances of available communication infrastructures (both hardware and software). We describe the fundamental design principles from a software and curriculum perspective of why these two infrastructures can be overlapped in educational environments for important and meaningful learning outcomes. The products of this intersection result in new modes of expression (in terms of gesture, deixis and informal/formal registers), classroom identity formation in mathematically-meaningful ways, and pedagogy in terms of activity structure and intentionality. We exemplify the results of such intersection on classroom learning, participation and motivation.  相似文献   

4.
João Pedro da Ponte 《ZDM》2007,39(5-6):419-430
In Portugal, since the beginning of the 1990s, problem solving became increasingly identified with mathematical explorations and investigations. A number of research studies have been conducted, focusing on students’ learning, teachers’ classroom practices and teacher education. Currently, this line of work involves studies from primary school to university mathematics. This perspective impacted the mathematics curriculum documents that explicitly recommend teachers to propose mathematics investigations in their classrooms. On national meetings, many teachers report experiences involving students’ doing investigations and indicate to use regularly such tasks in their practice. However, this still appears to be a marginal activity in most mathematics classes, especially when there is pressure for preparation for external examinations (at grades 9 and 12). International assessments such as PISA and national assessments (at grades 4 and 6) emphasize tasks with realistic contexts. They reinforce the view that mathematics tasks must be varied beyond simple computational exercises or intricate abstract problems but they do not support the notion of extended explorations. Future developments will show what paths will emerge from these contradictions between promising research and classroom reports, curriculum orientations, professional experience, and assessment frameworks and instruments.  相似文献   

5.
In a national supplement to TIMSS, lower-secondary school teachers (N=102) and their students (N=975) reported on mathematics instruction by means of a teacher questionnaire (teaching-learning methods, instructional sub-goals, facilitated student activities, achievement assessment, teacher role) and a student questionnaire (teachers' instructional proficiency, classroom climate). A cluster analysis performed on the ratings of teaching-learning methods yielded a solution with three clusters referred to as progressive, classical, and balanced learning environment. Cluster-related differences in facilitated student activities, achievement evaluation and preferred teacher role were found but not in instructional sub-goals. Students from different learning environments equally approved teachers' instructional proficiency and classroom climate and also had similar TIMSS mathematics scores. The results of this study provide empirical evidence that in addition to classical teacher-centered learning environments there seem to exist more diversified and studentcentered learning environments that address the needs for students to direct their own learning, communicate and work with others, and develop ways of dealing with complex problems. In line with the research literature it was also found that high mathematics achievement is not restricted to a certain type of learning environment.  相似文献   

6.
In line with international trends, the new South African mathematics curriculum implores mathematics educators to realize a pedagogy in their classrooms that is more practical, activity-oriented, and connected to their learners' lives. Drawing on data from a larger study that explores theory–practice relations in mathematics education, this paper shows how such progressive practices, when interpreted with respect to the teaching of measurement which required learners to use different measuring instruments for measuring the school grounds in learning about length and perimeter, were found to be deeply gendered. In two different contexts of an ‘African' township school and a predominantly ‘Indian' suburban school, girls in a grade 6 mathematics classroom faced direct sexism as they struggled to take the opportunity to participate in the activity and learn how to measure – an important mathematical competence and everyday knowledge and skill. The article analyses the data with reference to the human rights imperatives of the new national curricula and approaches to addressing disadvantage and discrimination for girls in mathematics classrooms.  相似文献   

7.
One classroom using two units from a Standards-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly connected to the meaningfulness and implicit/explicit temporality of the contexts that students investigated as part of their classroom activities. This terminology held great promise for promoting the concept of y-intercept within a multiple representation environment. However, the teacher's interpretation of different activities and his assumptions about the transparency of different representations, as well as students' past experiences left the student-generated terminology and the concept of y-intercept disconnected from one another. This resulted in student-generated terminology that had limited applicability, a fragile understanding of y-intercept within different representations, and for some students, interference between their invented terminology and the concept of y-intercept itself.  相似文献   

8.
In undergraduate mathematics courses, pre-service elementary school teachers are often faced with the task of re-learning some of the concepts they themselves struggled with in their own schooling. This often involves different cognitive processes and psychological issues than initial learning: pre-service teachers have had many more opportunities to construct understandings and representations than initial learners, some of which may be more complex and engrained; pre-service teachers are likely to have created deeply-held–and often negative–beliefs and attitudes toward certain mathematical ideas and processes. In our recent research, we found that pre-service teachers who used a particular computer-based microworld, one emphasising visual representations of and experimental interactions with elementary number theory concepts, overcame many cognitive and psychological difficulties reported in the literature. In this study, we investigate the possibilities of using a similarly-designed microworld that involves a set of rational number concepts. We describe the affordances of this microworld, both in terms of pre-service teacher learning and research on pre-service teacher learning, namely, the helpful “window” it gave us on the mathematical meaning-making of pre-service teachers. We also show how their interactions with this microworld provided many with a new and aesthetically-rich set of visualisations and experiences.  相似文献   

9.
Ole Skovsmose 《ZDM》2001,33(4):123-132
According to many observations, traditional mathematics education falls within the exercise paradigm. This paradigm is contrasted with landscapes of investigation serving as invitations for students to be involved in processes of exploration and explanation. The distinction between the exercise paradigm and landscapes of investigation is combined with a distinction between three different types of reference which might provide mathematical concepts and classroom activities with meaning: references to mathematics; references to a semi-reality, and references to a real-life situation. The six possible learning milieus are illustrated by examples. Moving away from the exercise paradigm and in the direction of landscapes of investigation may help to abandon the authorities of the traditional mathematics classroom and to make students the acting subjects in their learning processes. Moving away from reference to pure mathematics and in the direction of real life references may help to provide resources for reflection on mathematics and its applications. My hope is that finding a route among the different milieus of learning may provide new resources for making the students both acting and reflecting and in this way providing mathematics education with a critical dimension.  相似文献   

10.
Wee Tiong Seah  Aihui Peng 《ZDM》2012,44(1):71-82
This article reports on a scoping study conducted in Australia and Sweden to facilitate the understanding of the values that are associated with effective learning of mathematics in Asian classrooms. Nineteen ??Western?? values have been identified, of which three (explanation, sharing and fun) were commonly embraced in the two countries. It is also evident that traits that are valued can be and are demonstrated in different forms. The implications for improving mathematics education through the harnessing of values are discussed. The distinction made between what is valued and the forms the value can take should empower classroom teachers to incorporate values flexibly in different classroom contexts.  相似文献   

11.
In this article, we will describe the results of a study of 6th grade students learning about the mathematics of change. The students in this study worked with software environments for the computer and the graphing calculator that included a simulation of a moving elevator, linked to a graph of its velocity vs. time. We will describe how the students and their teacher negotiated the mathematical meanings of these representations, in interaction with the software and other representational tools available in the classroom. The class developed ways of selectively attending to specific features of stacks of centimeter cubes, hand-drawn graphs, and graphs (labeled velocity vs. time) on the computer screen. In addition, the class became adept at imagining the motions that corresponded to various velocity vs. time graphs. In this article, we describe this development as a process of learning to see mathematical representations of motion. The main question this article addresses is: How do students learn to see mathematical representations in ways that are consistent with the discipline of mathematics? This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Birgit Pepin 《ZDM》2011,43(4):535-546
Comparing English and Norwegian pupils’ attitude towards mathematics, in this article I develop a deeper understanding of the factors that may shape and influence ‘pupil attitude towards mathematics’, and argue for it as a socio-cultural construct embedded in and shaped by students’ environment and context in which they learn mathematics. The theoretical framework leans on work by Zan and Di Martino (The Montana Mathematics Enthusiast, Monograph 3, pp. 157–168, 2007) to elicit Norwegian and English pupils’ attitude of mathematics as they experience it in their respective environments. Whilst there were differences which could be seen to be accounted for by differently ‘figured’ environments, there are also many similarities. It was interesting to see that, albeit based on a small statistical sample, in both countries students had a positive attitude towards mathematics in year 7/8, which dropped in year 9, and increased again in years 10/11. This result could be explained and compared with other larger scale studies (e.g. Hodgen et al. in Proceedings of the British Society for Research into Learning Mathematics. 29(3), 2009). The analysis of pupils’ qualitative comments (and classroom observations) suggested seven factors that appeared to influence pupil attitude most, and these had ‘superficial’ commonalities, but the perceptions that appeared to underpin these mentions were different, and could be linked to the environments of learning mathematics in their respective classrooms. In summary, it is claimed that it is not enough to identify the factors that may shape and influence pupil attitude, but more importantly, to study how these are ‘lived’ by pupils, what meanings are made in classrooms and in different contexts, and how the factors interrelate and can be understood.  相似文献   

13.
Mathematics education for multilingual classrooms calls for instructional approaches that build upon students’ multilingual resources. However, so far, students’ multilingual resources and the interplay of their components have only partly been disentangled and rarely compared between different multilingual contexts. This article suggests a conceptualization of multilingual repertoires-in-use as characterized by (a) what students use of certain languages, registers, and representations as sources for meaning-making in mathematics classrooms and (b) their processes of how they connect certain languages, registers, and representations. This qualitative learning-process study compares students’ multilingual repertoires-in-use in three contexts: Spanish-speaking foreign language learners of German in Colombia, Turkish- and German-speaking students born in Germany, and Arabic-speaking German language beginners recently immigrated to Germany. The analysis reveals the biggest differences not only in what the students use, but how they connect languages, registers, and representations. Some of these differences can partly be traced back to different classroom cultural practices. These findings suggest extending the conceptual framework for multilingual repertoires-in-use and including it in a social theoretical perspective. Thus, these findings have important practical consequences for multilingual mathematics classrooms: The instructional approach of relating languages, registers, and representations needs to be applied more flexibly, taking into account students’ different starting points. When doing so, students’ connection processes should be supported and explicated more systematically in order to fully exploit the students’ repertoires.  相似文献   

14.
Marcelo C. Borba 《ZDM》2009,41(4):453-465
Research on the influence of multiple representations in mathematics education gained new momentum when personal computers and software started to become available in the mid-1980s. It became much easier for students who were not fond of algebraic representations to work with concepts such as function using graphs or tables. Research on how students use such software showed that they shaped the tools to their own needs, resulting in an intershaping relationship in which tools shape the way students know at the same time the students shape the tools and influence the design of the next generation of tools. This kind of research led to the theoretical perspective presented in this paper: knowledge is constructed by collectives of humans-with-media. In this paper, I will discuss how media have shaped the notions of problem and knowledge, and a parallel will be developed between the way that software has brought new possibilities to mathematics education and the changes that the Internet may bring to mathematics education. This paper is, therefore, a discussion about the future of mathematics education. Potential scenarios for the future of mathematics education, if the Internet becomes accepted in the classroom, will be discussed.  相似文献   

15.
JeongSuk Pang 《ZDM》2012,44(2):137-148
Student-centered pedagogy has been consistently emphasized in many reform documents. This paper traces the process of changing traditional teacher-centered instruction toward a student-centered approach in the Korean context. By looking closely at the teacher’s successes and struggles, the paper attempts to understand better what constitutes the process of implementing new ideals into actual classroom contexts. The paper also analyzes what has changed and not changed in this teaching practice in order to reveal culturally specific values and expectations of mathematics instruction. Given that teaching practices of Korea have rarely been studied in international contexts, this paper is expected to foster an increase in the recent interest in effective mathematics instruction across different education systems.  相似文献   

16.
17.
This paper describes and analyses the iterative design and development of a computational context for non-euclidean geometry. Drawing on three episodes from the design process, the paper discusses the epistemological implications associated with interplay between learning hyperbolic geometry and context in which that learning takes place. In particular, it explores the ways in which learners can become designers of the computational context, and the designer can become a learner. The paper concludes with a discussion of the microworld paradigm in relation to what might be called ‘advanced’ mathematics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
To make optimal use of computational environments, one must understand how students interact with the environments and how students' mathematical thinking is reflected and affected by their use of the environments. Similarly, to make sense of research on students' thinking and learning, one must understand how the environments and contexts used in the research may affect the conclusions one derives.The research on students' learning of functions has approached the topic in terms of symbols and graphs (see, for example, Leinhardt et al. (1990) for a review of work up to that point; Harel and Dubinsky (1992) for a collection of research; and Dugdale et. al. (1995), for some recent thinking about implications for curriculum reform using technology). Dynamic geometry environments (DGEs) like Cabri Geometry or Geometer's Sketchpad, offer us an opportunity to get a new perspective on these old and important issues. DGEs let students build geometrical constructions and then drag certain objects around the screen in a continuous manner while observing how the entire construction responds dynamically. In this way DGEs model functional relationships that are not specified by symbols or represented by graphs.Based on interviews with undergraduate mathematics majors, this paper presents preliminary observations that confirm some old results and raise some new questions about students' notions of function.  相似文献   

19.
20.
This article reports on “MaterialSim”, an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as opposed to only interacting with ready-made simulations; (c) the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to computational materials science, and (d) the principles which govern the design of computational agent-based learning environments in general and for materials science in particular. Data sources for the evaluation of these studies include classroom observations, interviews with students, videotaped sessions of model-building, questionnaires, and analysis of artifacts. Results suggest that by becoming ‘model builders,’ students develop deeper understanding of core concepts in materials science, and learn how to better identify unifying principles and behaviors within the content matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号